ReactSeq / onmt /utils /earlystopping.py
Oopstom's picture
Upload 313 files
c668e80 verified
from enum import Enum
from onmt.utils.logging import logger
class PatienceEnum(Enum):
IMPROVING = 0
DECREASING = 1
STOPPED = 2
class Scorer(object):
def __init__(self, best_score, name):
self.best_score = best_score
self.name = name
def is_improving(self, stats):
raise NotImplementedError()
def is_decreasing(self, stats):
raise NotImplementedError()
def update(self, stats):
self.best_score = self._caller(stats)
def __call__(self, stats, **kwargs):
return self._caller(stats)
def _caller(self, stats):
raise NotImplementedError()
class PPLScorer(Scorer):
def __init__(self):
super(PPLScorer, self).__init__(float("inf"), "ppl")
def is_improving(self, stats):
return stats.ppl() < self.best_score
def is_decreasing(self, stats):
return stats.ppl() > self.best_score
def _caller(self, stats):
return stats.ppl()
class AccuracyScorer(Scorer):
def __init__(self):
super(AccuracyScorer, self).__init__(float("-inf"), "acc")
def is_improving(self, stats):
return stats.accuracy() > self.best_score
def is_decreasing(self, stats):
return stats.accuracy() < self.best_score
def _caller(self, stats):
return stats.accuracy()
DEFAULT_SCORERS = [PPLScorer(), AccuracyScorer()]
SCORER_BUILDER = {"ppl": PPLScorer, "accuracy": AccuracyScorer}
def scorers_from_opts(opt):
if opt.early_stopping_criteria is None:
return DEFAULT_SCORERS
else:
scorers = []
for criterion in set(opt.early_stopping_criteria):
assert criterion in SCORER_BUILDER.keys(), "Criterion {} not found".format(
criterion
)
scorers.append(SCORER_BUILDER[criterion]())
return scorers
class EarlyStopping(object):
def __init__(self, tolerance, scorers=DEFAULT_SCORERS):
"""
Callable class to keep track of early stopping.
Args:
tolerance(int): number of validation steps without improving
scorer(fn): list of scorers to validate performance on dev
"""
self.tolerance = tolerance
self.stalled_tolerance = self.tolerance
self.current_tolerance = self.tolerance
self.early_stopping_scorers = scorers
self.status = PatienceEnum.IMPROVING
self.current_step_best = 0
def __call__(self, valid_stats, step):
"""
Update the internal state of early stopping mechanism, whether to
continue training or stop the train procedure.
Checks whether the scores from all pre-chosen scorers improved. If
every metric improve, then the status is switched to improving and the
tolerance is reset. If every metric deteriorate, then the status is
switched to decreasing and the tolerance is also decreased; if the
tolerance reaches 0, then the status is changed to stopped.
Finally, if some improved and others not, then it's considered stalled;
after tolerance number of stalled, the status is switched to stopped.
:param valid_stats: Statistics of dev set
"""
if self.status == PatienceEnum.STOPPED:
# Don't do anything
return
if all(
[scorer.is_improving(valid_stats) for scorer in self.early_stopping_scorers]
):
self._update_increasing(valid_stats, step)
elif all(
[
scorer.is_decreasing(valid_stats)
for scorer in self.early_stopping_scorers
]
):
self._update_decreasing()
else:
self._update_stalled()
def _update_stalled(self):
self.stalled_tolerance -= 1
logger.info(
"Stalled patience: {}/{}".format(self.stalled_tolerance, self.tolerance)
)
if self.stalled_tolerance == 0:
logger.info("Training finished after stalled validations. Early Stop!")
self._log_best_step()
self._decreasing_or_stopped_status_update(self.stalled_tolerance)
def _update_increasing(self, valid_stats, step):
self.current_step_best = step
for scorer in self.early_stopping_scorers:
logger.info(
"Model is improving {}: {:g} --> {:g}.".format(
scorer.name, scorer.best_score, scorer(valid_stats)
)
)
# Update best score of each criteria
scorer.update(valid_stats)
# Reset tolerance
self.current_tolerance = self.tolerance
self.stalled_tolerance = self.tolerance
# Update current status
self.status = PatienceEnum.IMPROVING
def _update_decreasing(self):
# Decrease tolerance
self.current_tolerance -= 1
# Log
logger.info(
"Decreasing patience: {}/{}".format(self.current_tolerance, self.tolerance)
)
# Log
if self.current_tolerance == 0:
logger.info("Training finished after not improving. Early Stop!")
self._log_best_step()
self._decreasing_or_stopped_status_update(self.current_tolerance)
def _log_best_step(self):
logger.info("Best model found at step {}".format(self.current_step_best))
def _decreasing_or_stopped_status_update(self, tolerance):
self.status = PatienceEnum.DECREASING if tolerance > 0 else PatienceEnum.STOPPED
def is_improving(self):
return self.status == PatienceEnum.IMPROVING
def has_stopped(self):
return self.status == PatienceEnum.STOPPED