ReactSeq / onmt /model_builder.py
Oopstom's picture
Upload 313 files
c668e80 verified
"""
This file is for models creation, which consults options
and creates each encoder and decoder accordingly.
"""
import torch
import torch.nn as nn
from torch.nn.init import xavier_uniform_, zeros_, uniform_
import onmt.modules
from onmt.encoders import str2enc
from onmt.decoders import str2dec
from onmt.inputters.inputter import dict_to_vocabs
from onmt.modules import Embeddings, CopyGenerator
from onmt.utils.misc import use_gpu
from onmt.utils.logging import logger
from onmt.utils.parse import ArgumentParser
from onmt.models.model_saver import load_checkpoint
from onmt.constants import DefaultTokens, ModelTask
from onmt.modules.lora import (
replace_lora_linear,
replace_lora_embedding,
mark_only_lora_as_trainable,
)
def build_embeddings(opt, vocabs, for_encoder=True):
"""
Args:
opt: the option in current environment.
vocab.
for_encoder(bool): build Embeddings for encoder or decoder?
"""
feat_pad_indices = []
num_feat_embeddings = []
if for_encoder:
emb_dim = opt.src_word_vec_size
word_padding_idx = vocabs["src"][DefaultTokens.PAD]
num_word_embeddings = len(vocabs["src"])
if "src_feats" in vocabs:
feat_pad_indices = [fv[DefaultTokens.PAD] for fv in vocabs["src_feats"]]
num_feat_embeddings = [len(fv) for fv in vocabs["src_feats"]]
freeze_word_vecs = opt.freeze_word_vecs_enc
else:
emb_dim = opt.tgt_word_vec_size
word_padding_idx = vocabs["tgt"][DefaultTokens.PAD]
num_word_embeddings = len(vocabs["tgt"])
freeze_word_vecs = opt.freeze_word_vecs_dec
emb = Embeddings(
word_vec_size=emb_dim,
position_encoding=opt.position_encoding,
position_encoding_type=opt.position_encoding_type,
feat_merge=opt.feat_merge,
feat_vec_exponent=opt.feat_vec_exponent,
feat_vec_size=opt.feat_vec_size,
dropout=opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
word_padding_idx=word_padding_idx,
feat_padding_idx=feat_pad_indices,
word_vocab_size=num_word_embeddings,
feat_vocab_sizes=num_feat_embeddings,
sparse=opt.optim == "sparseadam",
freeze_word_vecs=freeze_word_vecs,
)
return emb
def build_encoder(opt, embeddings):
"""
Various encoder dispatcher function.
Args:
opt: the option in current environment.
embeddings (Embeddings): vocab embeddings for this encoder.
"""
enc_type = opt.encoder_type if opt.model_type == "text" else opt.model_type
return str2enc[enc_type].from_opt(opt, embeddings)
def build_decoder(opt, embeddings):
"""
Various decoder dispatcher function.
Args:
opt: the option in current environment.
embeddings (Embeddings): vocab embeddings for this decoder.
"""
dec_type = (
"ifrnn" if opt.decoder_type == "rnn" and opt.input_feed else opt.decoder_type
)
return str2dec[dec_type].from_opt(opt, embeddings)
def load_test_model(opt, device_id=0, model_path=None):
if model_path is None:
model_path = opt.models[0]
checkpoint = load_checkpoint(model_path)
model_opt = ArgumentParser.ckpt_model_opts(checkpoint["opt"])
model_opt.quant_layers = opt.quant_layers
model_opt.quant_type = opt.quant_type
if opt.world_size > 1 and opt.parallel_mode == "tensor_parallel":
model_opt.world_size = opt.world_size
model_opt.parallel_mode = opt.parallel_mode
model_opt.gpu_ranks = opt.gpu_ranks
device = torch.device("cuda", device_id)
offset = device_id
else:
if use_gpu(opt):
if len(opt.gpu_ranks) > 0:
device_id = opt.gpu_ranks[0]
elif opt.gpu > -1:
device_id = opt.gpu
device = torch.device("cuda", device_id)
else:
device = torch.device("cpu")
offset = 0
ArgumentParser.update_model_opts(model_opt)
ArgumentParser.validate_model_opts(model_opt)
vocabs = dict_to_vocabs(checkpoint["vocab"])
# Avoid functionality on inference
model_opt.update_vocab = False
model = build_base_model(model_opt, vocabs)
precision = torch.float32
if opt.precision == "fp16":
precision = torch.float16
elif opt.precision == "int8":
if opt.gpu >= 0:
raise ValueError("Dynamic 8-bit quantization is not supported on GPU")
else:
precision = torch.int8
logger.info("Loading data into the model")
if "model" in checkpoint.keys():
# weights are in the .pt file
model.load_state_dict(
checkpoint,
precision=precision,
device=device,
strict=True,
offset=offset,
)
else:
# weights are not in the .pt checkpoint but stored in the safetensors file
base_name = model_path[:-3] if model_path[-3:] == ".pt" else model_path
model.load_safe_state_dict(
base_name,
precision=precision,
device=device,
strict=True,
offset=offset,
)
del checkpoint
model.eval()
model.generator.eval()
return vocabs, model, model_opt
def build_src_emb(model_opt, vocabs):
# Build embeddings.
if model_opt.model_type == "text":
src_emb = build_embeddings(model_opt, vocabs)
else:
src_emb = None
return src_emb
def build_encoder_with_embeddings(model_opt, vocabs):
# Build encoder.
src_emb = build_src_emb(model_opt, vocabs)
encoder = build_encoder(model_opt, src_emb)
return encoder, src_emb
def build_decoder_with_embeddings(
model_opt, vocabs, share_embeddings=False, src_emb=None
):
# Build embeddings.
tgt_emb = build_embeddings(model_opt, vocabs, for_encoder=False)
if share_embeddings:
tgt_emb.word_lut.weight = src_emb.word_lut.weight
# Build decoder.
decoder = build_decoder(model_opt, tgt_emb)
return decoder, tgt_emb
def build_task_specific_model(model_opt, vocabs):
# Share the embedding matrix - preprocess with share_vocab required.
if model_opt.share_embeddings:
# src/tgt vocab should be the same if `-share_vocab` is specified.
assert (
vocabs["src"] == vocabs["tgt"]
), "preprocess with -share_vocab if you use share_embeddings"
if model_opt.model_task == ModelTask.SEQ2SEQ:
encoder, src_emb = build_encoder_with_embeddings(model_opt, vocabs)
decoder, _ = build_decoder_with_embeddings(
model_opt,
vocabs,
share_embeddings=model_opt.share_embeddings,
src_emb=src_emb,
)
return onmt.models.NMTModel(encoder=encoder, decoder=decoder)
elif model_opt.model_task == ModelTask.LANGUAGE_MODEL:
src_emb = build_src_emb(model_opt, vocabs)
decoder, _ = build_decoder_with_embeddings(
model_opt, vocabs, share_embeddings=True, src_emb=src_emb
)
return onmt.models.LanguageModel(decoder=decoder)
else:
raise ValueError(f"No model defined for {model_opt.model_task} task")
def use_embeddings_from_checkpoint(vocabs, model, checkpoint):
# Update vocabulary embeddings with checkpoint embeddings
logger.info("Updating vocabulary embeddings with checkpoint embeddings")
# Embedding layers
enc_emb_name = "encoder.embeddings.make_embedding.emb_luts.0.weight"
dec_emb_name = "decoder.embeddings.make_embedding.emb_luts.0.weight"
model_dict = {k: v for k, v in model.state_dict().items() if "generator" not in k}
generator_dict = model.generator.state_dict()
for side, emb_name in [("src", enc_emb_name), ("tgt", dec_emb_name)]:
if emb_name not in checkpoint["model"]:
continue
new_tokens = []
ckp_vocabs = dict_to_vocabs(checkpoint["vocab"])
for i, tok in enumerate(vocabs[side].ids_to_tokens):
if tok in ckp_vocabs[side]:
old_i = ckp_vocabs[side].lookup_token(tok)
model_dict[emb_name][i] = checkpoint["model"][emb_name][old_i]
if side == "tgt":
generator_dict["weight"][i] = checkpoint["generator"]["weight"][
old_i
]
generator_dict["bias"][i] = checkpoint["generator"]["bias"][old_i]
else:
# Just for debugging purposes
new_tokens.append(tok)
logger.info("%s: %d new tokens" % (side, len(new_tokens)))
# Remove old vocabulary associated embeddings
del checkpoint["model"][emb_name]
del checkpoint["generator"]["weight"], checkpoint["generator"]["bias"]
fake_ckpt = {"model": model_dict, "generator": generator_dict}
model.load_state_dict(fake_ckpt)
def build_base_model(model_opt, vocabs):
"""Build a model from opts.
Args:
model_opt: the option loaded from checkpoint. It's important that
the opts have been updated and validated. See
:class:`onmt.utils.parse.ArgumentParser`.
vocabs (dict[str, Vocab]):
`Field` objects for the model.
Returns:
the NMTModel.
"""
# for back compat when attention_dropout was not defined
try:
model_opt.attention_dropout
except AttributeError:
model_opt.attention_dropout = model_opt.dropout
# Build Model
model = build_task_specific_model(model_opt, vocabs)
nonlora_to_quant = [
layer
for layer in getattr(model_opt, "quant_layers", [])
if layer not in getattr(model_opt, "lora_layers", [])
]
if hasattr(model_opt, "quant_layers") and len(nonlora_to_quant) > 0:
if model_opt.quant_type in ["bnb_8bit", "bnb_FP4", "bnb_NF4"]:
logger.info(
"%s compression of layer %s" % (model_opt.quant_type, nonlora_to_quant)
)
try:
from onmt.modules.bnb_linear import replace_bnb_linear
except ImportError:
raise ImportError("Install bitsandbytes to use 4/8bit compression")
model = replace_bnb_linear(
model, module_to_convert=nonlora_to_quant, q_type=model_opt.quant_type
)
else:
logger.info("compression type %s not supported." % model_opt.quant_type)
mark_lora = False
if hasattr(model_opt, "lora_layers") and len(model_opt.lora_layers) > 0:
if model_opt.freeze_encoder or model_opt.freeze_decoder:
raise ValueError("Cannot use LoRa with Enc/Dec-oder freezing")
for layer in model_opt.lora_layers:
if hasattr(model_opt, "quant_layers") and layer in model_opt.quant_layers:
quant_type = model_opt.quant_type
else:
quant_type = None
logger.info("Adding LoRa layers for %s quant %s" % (layer, quant_type))
model = replace_lora_linear(
model,
r=model_opt.lora_rank,
lora_alpha=model_opt.lora_alpha,
lora_dropout=model_opt.lora_dropout,
layer=layer,
quant_type=quant_type,
use_ckpting=model_opt.use_ckpting,
)
mark_lora = True
if hasattr(model_opt, "lora_embedding") and model_opt.lora_embedding:
if model_opt.freeze_encoder or model_opt.freeze_decoder:
raise ValueError("Cannot use LoRa with Enc/Dec-oder freezing")
logger.info("Adding LoRa Embeddings")
model = replace_lora_embedding(
model, r=model_opt.lora_rank, lora_alpha=model_opt.lora_alpha
)
mark_lora = True
if mark_lora:
mark_only_lora_as_trainable(model, bias="lora_only")
# Build Generator.
if not model_opt.copy_attn:
generator = nn.Linear(model_opt.dec_hid_size, len(vocabs["tgt"]))
if model_opt.share_decoder_embeddings:
generator.weight = model.decoder.embeddings.word_lut.weight
else:
vocab_size = len(vocabs["tgt"])
pad_idx = vocabs["tgt"][DefaultTokens.PAD]
generator = CopyGenerator(model_opt.dec_hid_size, vocab_size, pad_idx)
if model_opt.share_decoder_embeddings:
generator.linear.weight = model.decoder.embeddings.word_lut.weight
model.generator = generator
return model
def build_model(model_opt, opt, vocabs, checkpoint, device_id):
logger.info("Building model...")
model = build_base_model(model_opt, vocabs)
# If new training initialize the model params
# If update_vocab init also but checkpoint will overwrite old weights
if checkpoint is None or model_opt.update_vocab:
if model_opt.param_init != 0.0:
for param in model.parameters():
uniform_(param, -model_opt.param_init, model_opt.param_init)
elif model_opt.param_init_glorot:
for name, module in model.named_modules():
for param_name, param in module.named_parameters():
if param_name == "weight" and param.dim() > 1:
xavier_uniform_(param)
elif param_name == "bias":
zeros_(param)
else:
raise ValueError("You need either param_init != 0 OR init_glorot True")
if hasattr(model, "encoder") and hasattr(model.encoder, "embeddings"):
model.encoder.embeddings.load_pretrained_vectors(
model_opt.pre_word_vecs_enc
)
if hasattr(model.decoder, "embeddings"):
model.decoder.embeddings.load_pretrained_vectors(
model_opt.pre_word_vecs_dec
)
# ONLY for legacy fusedam with amp pytorch requires NOT to half the model
if (
model_opt.model_dtype == "fp16"
and model_opt.apex_opt_level not in ["O0", "O1", "O2", "O3"]
and model_opt.optim == "fusedadam"
):
precision = torch.float16
logger.info("Switching model to half() for FusedAdam legacy")
logger.info("Non quantized layer compute is %s", model_opt.model_dtype)
else:
precision = torch.float32
logger.info("Switching model to float32 for amp/apex_amp")
logger.info("Non quantized layer compute is %s", model_opt.model_dtype)
if opt.world_size > 1 and opt.parallel_mode == "tensor_parallel":
device = torch.device("cuda")
offset = device_id
else:
if use_gpu(opt):
device = torch.device("cuda")
else:
device = torch.device("cpu")
offset = 0
if checkpoint is not None:
if model_opt.update_vocab:
if "model" in checkpoint.keys():
# Update model embeddings with those from the checkpoint
# after initialization
use_embeddings_from_checkpoint(vocabs, model, checkpoint)
# after this checkpoint contains no embeddings
else:
raise ValueError(
"Update Vocab is not compatible with safetensors mode (yet"
)
# when using LoRa or updating the vocab (no more embeddings in ckpt)
# => strict=False when loading state_dict
strict = not model_opt.update_vocab
if "model" in checkpoint.keys():
# weights are in the .pt file
model.load_state_dict(
checkpoint,
precision=precision,
device=device,
strict=strict,
offset=offset,
)
else:
# weights are not in the .pt checkpoint but stored in the safetensors file
model_path = (
opt.train_from[:-3] if opt.train_from[-3:] == ".pt" else opt.train_from
)
model.load_safe_state_dict(
model_path,
precision=precision,
device=device,
strict=strict,
offset=offset,
)
else:
model.to(precision)
model.to(device)
if model_opt.freeze_encoder:
model.encoder.requires_grad_(False)
model.encoder.embeddings.requires_grad_()
if model_opt.freeze_decoder:
model.decoder.requires_grad_(False)
model.decoder.embeddings.requires_grad_()
logger.info(model)
return model