ReactSeq / onmt /modules /stacked_rnn.py
Oopstom's picture
Upload 313 files
c668e80 verified
raw
history blame
2.01 kB
""" Implementation of ONMT RNN for Input Feeding Decoding """
import torch
import torch.nn as nn
class StackedLSTM(nn.Module):
"""
Our own implementation of stacked LSTM.
Needed for the decoder, because we do input feeding.
"""
def __init__(self, num_layers, input_size, hidden_size, dropout):
super(StackedLSTM, self).__init__()
self.dropout = nn.Dropout(dropout)
self.num_layers = num_layers
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(nn.LSTMCell(input_size, hidden_size))
input_size = hidden_size
def forward(self, input_feed, hidden):
h_0, c_0 = hidden
h_1, c_1 = [], []
for i, layer in enumerate(self.layers):
h_1_i, c_1_i = layer(input_feed, (h_0[i], c_0[i]))
input_feed = h_1_i
if i + 1 != self.num_layers:
input_feed = self.dropout(input_feed)
h_1 += [h_1_i]
c_1 += [c_1_i]
h_1 = torch.stack(h_1)
c_1 = torch.stack(c_1)
return input_feed, (h_1, c_1)
class StackedGRU(nn.Module):
"""
Our own implementation of stacked GRU.
Needed for the decoder, because we do input feeding.
"""
def __init__(self, num_layers, input_size, hidden_size, dropout):
super(StackedGRU, self).__init__()
self.dropout = nn.Dropout(dropout)
self.num_layers = num_layers
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(nn.GRUCell(input_size, hidden_size))
input_size = hidden_size
def forward(self, input_feed, hidden):
h_1 = []
for i, layer in enumerate(self.layers):
h_1_i = layer(input_feed, hidden[0][i])
input_feed = h_1_i
if i + 1 != self.num_layers:
input_feed = self.dropout(input_feed)
h_1 += [h_1_i]
h_1 = torch.stack(h_1)
return input_feed, (h_1,)