ReactSeq / onmt /tests /test_models.py
Oopstom's picture
Upload 313 files
c668e80 verified
raw
history blame
7.5 kB
import copy
import unittest
import torch
import pyonmttok
from onmt.constants import DefaultTokens
from collections import Counter
import onmt
import onmt.inputters
import onmt.opts
from onmt.model_builder import build_embeddings, build_encoder, build_decoder
from onmt.utils.parse import ArgumentParser
parser = ArgumentParser(description="train.py")
onmt.opts.model_opts(parser)
onmt.opts.distributed_opts(parser)
onmt.opts._add_train_general_opts(parser)
# -data option is required, but not used in this test, so dummy.
opt = parser.parse_known_args(["-data", "dummy"])[0]
class TestModel(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(TestModel, self).__init__(*args, **kwargs)
self.opt = opt
def get_vocabs(self):
src_vocab = pyonmttok.build_vocab_from_tokens(
Counter(),
maximum_size=0,
minimum_frequency=1,
special_tokens=[
DefaultTokens.UNK,
DefaultTokens.PAD,
DefaultTokens.BOS,
DefaultTokens.EOS,
],
)
tgt_vocab = pyonmttok.build_vocab_from_tokens(
Counter(),
maximum_size=0,
minimum_frequency=1,
special_tokens=[
DefaultTokens.UNK,
DefaultTokens.PAD,
DefaultTokens.BOS,
DefaultTokens.EOS,
],
)
vocabs = {"src": src_vocab, "tgt": tgt_vocab}
return vocabs
def get_batch(self, source_l=3, bsize=1):
# len x batch x nfeat
test_src = torch.ones(bsize, source_l, 1).long()
test_tgt = torch.ones(bsize, source_l, 1).long()
test_length = torch.ones(bsize).fill_(source_l).long()
return test_src, test_tgt, test_length
def embeddings_forward(self, opt, source_l=3, bsize=1):
"""
Tests if the embeddings works as expected
args:
opt: set of options
source_l: Length of generated input sentence
bsize: Batchsize of generated input
"""
vocabs = self.get_vocabs()
emb = build_embeddings(opt, vocabs)
test_src, _, __ = self.get_batch(source_l=source_l, bsize=bsize)
if opt.decoder_type == "transformer":
input = torch.cat([test_src, test_src], 1)
res = emb(input)
compare_to = torch.zeros(bsize, source_l * 2, opt.src_word_vec_size)
else:
res = emb(test_src)
compare_to = torch.zeros(bsize, source_l, opt.src_word_vec_size)
self.assertEqual(res.size(), compare_to.size())
def encoder_forward(self, opt, source_l=3, bsize=1):
"""
Tests if the encoder works as expected
args:
opt: set of options
source_l: Length of generated input sentence
bsize: Batchsize of generated input
"""
if opt.hidden_size > 0:
opt.enc_hid_size = opt.hidden_size
vocabs = self.get_vocabs()
embeddings = build_embeddings(opt, vocabs)
enc = build_encoder(opt, embeddings)
test_src, test_tgt, test_length = self.get_batch(source_l=source_l, bsize=bsize)
enc_out, hidden_t, test_length = enc(test_src, test_length)
# Initialize vectors to compare size with
test_hid = torch.zeros(self.opt.enc_layers, bsize, opt.enc_hid_size)
test_out = torch.zeros(bsize, source_l, opt.dec_hid_size)
# Ensure correct sizes and types
self.assertEqual(test_hid.size(), hidden_t[0].size(), hidden_t[1].size())
self.assertEqual(test_out.size(), enc_out.size())
self.assertEqual(type(enc_out), torch.Tensor)
def nmtmodel_forward(self, opt, source_l=3, bsize=1):
"""
Creates a nmtmodel with a custom opt function.
Forwards a testbatch and checks output size.
Args:
opt: Namespace with options
source_l: length of input sequence
bsize: batchsize
"""
if opt.hidden_size > 0:
opt.enc_hid_size = opt.hidden_size
opt.dec_hid_size = opt.hidden_size
vocabs = self.get_vocabs()
embeddings = build_embeddings(opt, vocabs)
enc = build_encoder(opt, embeddings)
embeddings = build_embeddings(opt, vocabs, for_encoder=False)
dec = build_decoder(opt, embeddings)
model = onmt.models.model.NMTModel(enc, dec)
test_src, test_tgt, test_length = self.get_batch(source_l=source_l, bsize=bsize)
output, attn = model(test_src, test_tgt, test_length)
outputsize = torch.zeros(bsize, source_l - 1, opt.dec_hid_size)
# Make sure that output has the correct size and type
self.assertEqual(output.size(), outputsize.size())
self.assertEqual(type(output), torch.Tensor)
def _add_test(param_setting, methodname):
"""
Adds a Test to TestModel according to settings
Args:
param_setting: list of tuples of (param, setting)
methodname: name of the method that gets called
"""
def test_method(self):
opt = copy.deepcopy(self.opt)
if param_setting:
for param, setting in param_setting:
setattr(opt, param, setting)
ArgumentParser.update_model_opts(opt)
getattr(self, methodname)(opt)
if param_setting:
name = "test_" + methodname + "_" + "_".join(str(param_setting).split())
else:
name = "test_" + methodname + "_standard"
setattr(TestModel, name, test_method)
test_method.__name__ = name
"""
TEST PARAMETERS
"""
opt.brnn = False
test_embeddings = [[], [("decoder_type", "transformer")]]
for p in test_embeddings:
_add_test(p, "embeddings_forward")
tests_encoder = [
[],
[("encoder_type", "mean")],
# [('encoder_type', 'transformer'),
# ('word_vec_size', 16), ('hidden_size', 16)],
[],
]
for p in tests_encoder:
_add_test(p, "encoder_forward")
tests_nmtmodel = [
[("rnn_type", "GRU")],
[("layers", 10)],
[("input_feed", 0)],
[
("decoder_type", "transformer"),
("encoder_type", "transformer"),
("src_word_vec_size", 16),
("tgt_word_vec_size", 16),
("hidden_size", 16),
],
[
("decoder_type", "transformer"),
("encoder_type", "transformer"),
("src_word_vec_size", 16),
("tgt_word_vec_size", 16),
("hidden_size", 16),
("position_encoding", True),
],
[("coverage_attn", True)],
[("copy_attn", True)],
[("global_attention", "mlp")],
[("context_gate", "both")],
[("context_gate", "target")],
[("context_gate", "source")],
[("encoder_type", "brnn"), ("brnn_merge", "sum")],
[("encoder_type", "brnn")],
[("decoder_type", "cnn"), ("encoder_type", "cnn")],
[("encoder_type", "rnn"), ("global_attention", None)],
[
("encoder_type", "rnn"),
("global_attention", None),
("copy_attn", True),
("copy_attn_type", "general"),
],
[
("encoder_type", "rnn"),
("global_attention", "mlp"),
("copy_attn", True),
("copy_attn_type", "general"),
],
[],
]
if onmt.modules.sru.check_sru_requirement():
# """ Only do SRU test if requirment is safisfied. """
# SRU doesn't support input_feed.
tests_nmtmodel.append([("rnn_type", "SRU"), ("input_feed", 0)])
for p in tests_nmtmodel:
_add_test(p, "nmtmodel_forward")