|
""" Optimizers class """ |
|
import torch |
|
import torch.optim as optim |
|
from torch.nn.utils import clip_grad_norm_ |
|
import operator |
|
import functools |
|
from copy import copy |
|
from math import sqrt |
|
import types |
|
import os |
|
import importlib |
|
from onmt.utils.misc import fn_args |
|
|
|
try: |
|
import apex |
|
except ImportError: |
|
pass |
|
|
|
|
|
def build_torch_optimizer(model, opt): |
|
"""Builds the PyTorch optimizer. |
|
|
|
We use the default parameters for Adam that are suggested by |
|
the original paper https://arxiv.org/pdf/1412.6980.pdf |
|
These values are also used by other established implementations, |
|
e.g. https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer |
|
https://keras.io/optimizers/ |
|
Recently there are slightly different values used in the paper |
|
"Attention is all you need" |
|
https://arxiv.org/pdf/1706.03762.pdf, particularly the value beta2=0.98 |
|
was used there however, beta2=0.999 is still arguably the more |
|
established value, so we use that here as well |
|
|
|
Args: |
|
model: The model to optimize. |
|
opt. The dictionary of options. |
|
|
|
Returns: |
|
A ``torch.optim.Optimizer`` instance. |
|
""" |
|
params = [p for p in model.parameters() if p.requires_grad] |
|
betas = [opt.adam_beta1, opt.adam_beta2] |
|
if opt.optim == "sgd": |
|
optimizer = optim.SGD(params, lr=opt.learning_rate) |
|
elif opt.optim == "adagrad": |
|
optimizer = optim.Adagrad( |
|
params, |
|
lr=opt.learning_rate, |
|
initial_accumulator_value=opt.adagrad_accumulator_init, |
|
) |
|
elif opt.optim == "adadelta": |
|
optimizer = optim.Adadelta(params, lr=opt.learning_rate) |
|
elif opt.optim == "adafactor": |
|
optimizer = AdaFactor( |
|
params, non_constant_decay=True, enable_factorization=True, weight_decay=0 |
|
) |
|
elif opt.optim == "adam": |
|
optimizer = optim.Adam(params, lr=opt.learning_rate, betas=betas, eps=1e-8) |
|
elif opt.optim == "sparseadam": |
|
dense = [] |
|
sparse = [] |
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
|
|
if "embed" in name: |
|
sparse.append(param) |
|
else: |
|
dense.append(param) |
|
optimizer = MultipleOptimizer( |
|
[ |
|
optim.Adam(dense, lr=opt.learning_rate, betas=betas, eps=1e-8), |
|
optim.SparseAdam(sparse, lr=opt.learning_rate, betas=betas, eps=1e-8), |
|
] |
|
) |
|
elif opt.optim == "fusedadam": |
|
optimizer = FusedAdam(params, lr=opt.learning_rate, betas=betas) |
|
try: |
|
import apex |
|
except ImportError: |
|
raise ImportError("Could not import apex") |
|
if opt.apex_opt_level in ["O0", "O1", "O2", "O3"]: |
|
|
|
loss_scale = "dynamic" if opt.loss_scale == 0 else opt.loss_scale |
|
model, optimizer = apex.amp.initialize( |
|
[model, model.generator], |
|
optimizer, |
|
opt_level=opt.apex_opt_level, |
|
loss_scale=loss_scale, |
|
keep_batchnorm_fp32=None, |
|
) |
|
else: |
|
if opt.model_dtype == "fp16": |
|
|
|
|
|
static_loss_scale = opt.loss_scale |
|
dynamic_loss_scale = opt.loss_scale == 0 |
|
optimizer = apex.contrib.optimizers.FP16_Optimizer( |
|
optimizer, |
|
static_loss_scale=static_loss_scale, |
|
dynamic_loss_scale=dynamic_loss_scale, |
|
) |
|
elif opt.optim in ["adamw8bit", "pagedadamw8bit", "pagedadamw32bit"]: |
|
try: |
|
os.environ["BITSANDBYTES_NOWELCOME"] = "1" |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError("Install bitsandbytes to use bnb optimizers") |
|
if opt.optim == "adamw8bit": |
|
optimizer = bnb.optim.AdamW8bit( |
|
params, |
|
lr=opt.learning_rate, |
|
betas=betas, |
|
eps=1e-8, |
|
weight_decay=1e-2, |
|
amsgrad=False, |
|
optim_bits=8, |
|
args=None, |
|
min_8bit_size=1024, |
|
percentile_clipping=100, |
|
block_wise=True, |
|
is_paged=False, |
|
) |
|
elif opt.optim == "pagedadamw8bit": |
|
optimizer = bnb.optim.PagedAdamW8bit( |
|
params, |
|
lr=opt.learning_rate, |
|
betas=betas, |
|
eps=1e-8, |
|
weight_decay=1e-2, |
|
amsgrad=False, |
|
optim_bits=8, |
|
args=None, |
|
min_8bit_size=4096, |
|
percentile_clipping=100, |
|
block_wise=True, |
|
) |
|
elif opt.optim == "pagedadamw32bit": |
|
optimizer = bnb.optim.PagedAdamW32bit( |
|
params, |
|
lr=opt.learning_rate, |
|
betas=betas, |
|
eps=1e-8, |
|
weight_decay=1e-2, |
|
amsgrad=False, |
|
optim_bits=32, |
|
args=None, |
|
min_8bit_size=4096, |
|
percentile_clipping=100, |
|
block_wise=True, |
|
) |
|
else: |
|
raise ValueError("Invalid optimizer type: " + opt.optim) |
|
else: |
|
raise ValueError("Invalid optimizer type: " + opt.optim) |
|
|
|
return optimizer |
|
|
|
|
|
def make_learning_rate_decay_fn(opt): |
|
"""Returns the learning decay function from options.""" |
|
if opt.decay_method == "noam": |
|
return functools.partial( |
|
noam_decay, warmup_steps=opt.warmup_steps, model_size=opt.hidden_size |
|
) |
|
elif opt.decay_method == "noamwd": |
|
return functools.partial( |
|
noamwd_decay, |
|
warmup_steps=opt.warmup_steps, |
|
model_size=opt.hidden_size, |
|
rate=opt.learning_rate_decay, |
|
decay_steps=opt.decay_steps, |
|
start_step=opt.start_decay_steps, |
|
) |
|
elif opt.decay_method == "rsqrt": |
|
return functools.partial(rsqrt_decay, warmup_steps=opt.warmup_steps) |
|
elif opt.start_decay_steps is not None: |
|
return functools.partial( |
|
exponential_decay, |
|
rate=opt.learning_rate_decay, |
|
decay_steps=opt.decay_steps, |
|
start_step=opt.start_decay_steps, |
|
) |
|
|
|
|
|
def noam_decay(step, warmup_steps, model_size): |
|
"""Learning rate schedule described in |
|
https://arxiv.org/pdf/1706.03762.pdf. |
|
""" |
|
return model_size ** (-0.5) * min(step ** (-0.5), step * warmup_steps ** (-1.5)) |
|
|
|
|
|
def noamwd_decay(step, warmup_steps, model_size, rate, decay_steps, start_step=0): |
|
"""Learning rate schedule optimized for huge batches""" |
|
return ( |
|
model_size ** (-0.5) |
|
* min(step ** (-0.5), step * warmup_steps ** (-1.5)) |
|
* rate ** (max(step - start_step + decay_steps, 0) // decay_steps) |
|
) |
|
|
|
|
|
def exponential_decay(step, rate, decay_steps, start_step=0): |
|
"""A standard exponential decay, scaling the learning rate by :obj:`rate` |
|
every :obj:`decay_steps` steps. |
|
""" |
|
return rate ** (max(step - start_step + decay_steps, 0) // decay_steps) |
|
|
|
|
|
def rsqrt_decay(step, warmup_steps): |
|
"""Decay based on the reciprocal of the step square root.""" |
|
return 1.0 / sqrt(max(step, warmup_steps)) |
|
|
|
|
|
class MultipleOptimizer(object): |
|
"""Implement multiple optimizers needed for sparse adam""" |
|
|
|
def __init__(self, op): |
|
"""?""" |
|
self.optimizers = op |
|
|
|
@property |
|
def param_groups(self): |
|
param_groups = [] |
|
for optimizer in self.optimizers: |
|
param_groups.extend(optimizer.param_groups) |
|
return param_groups |
|
|
|
def zero_grad(self, set_to_none=True): |
|
"""?""" |
|
for op in self.optimizers: |
|
op.zero_grad(set_to_none) |
|
|
|
def step(self): |
|
"""?""" |
|
for op in self.optimizers: |
|
op.step() |
|
|
|
@property |
|
def state(self): |
|
"""?""" |
|
return {k: v for op in self.optimizers for k, v in op.state.items()} |
|
|
|
def state_dict(self): |
|
"""?""" |
|
return [op.state_dict() for op in self.optimizers] |
|
|
|
def load_state_dict(self, state_dicts): |
|
"""?""" |
|
assert len(state_dicts) == len(self.optimizers) |
|
for i in range(len(state_dicts)): |
|
self.optimizers[i].load_state_dict(state_dicts[i]) |
|
|
|
|
|
class Optimizer(object): |
|
""" |
|
Controller class for optimization. Mostly a thin |
|
wrapper for `optim`, but also useful for implementing |
|
rate scheduling beyond what is currently available. |
|
Also implements necessary methods for training RNNs such |
|
as grad manipulations. |
|
|
|
Args: |
|
optimizer: A ``torch.optim.Optimizer`` instance. |
|
learning_rate: The initial learning rate. |
|
learning_rate_decay_fn: An optional callable taking the current step |
|
as argument and return a learning rate scaling factor. |
|
max_grad_norm: Clip gradients to this global norm. |
|
""" |
|
|
|
def __init__( |
|
self, optimizer, learning_rate, learning_rate_decay_fn=None, max_grad_norm=None |
|
): |
|
self._optimizer = optimizer |
|
self._learning_rate = learning_rate |
|
self._learning_rate_decay_fn = learning_rate_decay_fn |
|
self._max_grad_norm = max_grad_norm or 0 |
|
self._training_step = 1 |
|
self._decay_step = 1 |
|
self._fp16 = None |
|
self._scaler = None |
|
|
|
@classmethod |
|
def from_opt(cls, model, opt, checkpoint=None): |
|
"""Builds the optimizer from options. |
|
|
|
Args: |
|
cls: The ``Optimizer`` class to instantiate. |
|
model: The model to optimize. |
|
opt: The dict of user options. |
|
checkpoint: An optional checkpoint to load states from. |
|
|
|
Returns: |
|
An ``Optimizer`` instance. |
|
""" |
|
optim_opt = opt |
|
optim_state_dict = None |
|
|
|
if opt.train_from and checkpoint is not None and "optim" in checkpoint.keys(): |
|
optim = checkpoint["optim"] |
|
ckpt_opt = checkpoint["opt"] |
|
ckpt_state_dict = {} |
|
if isinstance(optim, Optimizer): |
|
ckpt_state_dict["training_step"] = optim._step + 1 |
|
ckpt_state_dict["decay_step"] = optim._step + 1 |
|
ckpt_state_dict["optimizer"] = optim.optimizer.state_dict() |
|
else: |
|
ckpt_state_dict = optim |
|
|
|
if opt.reset_optim == "none": |
|
|
|
optim_opt = ckpt_opt |
|
optim_state_dict = ckpt_state_dict |
|
elif opt.reset_optim == "all": |
|
|
|
pass |
|
elif opt.reset_optim == "states": |
|
|
|
optim_opt = ckpt_opt |
|
optim_state_dict = ckpt_state_dict |
|
del optim_state_dict["optimizer"] |
|
elif opt.reset_optim == "keep_states": |
|
|
|
optim_state_dict = ckpt_state_dict |
|
|
|
optimizer = cls( |
|
build_torch_optimizer(model, optim_opt), |
|
optim_opt.learning_rate, |
|
learning_rate_decay_fn=make_learning_rate_decay_fn(optim_opt), |
|
max_grad_norm=optim_opt.max_grad_norm, |
|
) |
|
if opt.model_dtype == "fp16": |
|
if opt.optim == "fusedadam": |
|
if opt.apex_opt_level in ["O0", "O1", "O2", "O3"]: |
|
optimizer._fp16 = "apex.amp" |
|
else: |
|
optimizer._fp16 = "legacy" |
|
else: |
|
optimizer._fp16 = "amp" |
|
from torch.cuda.amp import GradScaler |
|
|
|
optimizer._scaler = GradScaler() |
|
if optim_state_dict: |
|
optimizer.load_state_dict(optim_state_dict) |
|
return optimizer |
|
|
|
@property |
|
def training_step(self): |
|
"""The current training step.""" |
|
return self._training_step |
|
|
|
@property |
|
def amp(self): |
|
"""True if use torch amp mix precision training.""" |
|
return self._fp16 == "amp" |
|
|
|
def learning_rate(self): |
|
"""Returns the current learning rate.""" |
|
if self._learning_rate_decay_fn is None: |
|
return self._learning_rate |
|
scale = self._learning_rate_decay_fn(self._decay_step) |
|
return scale * self._learning_rate |
|
|
|
def state_dict(self): |
|
return { |
|
"training_step": self._training_step, |
|
"decay_step": self._decay_step, |
|
"optimizer": self._optimizer.state_dict(), |
|
} |
|
|
|
def load_state_dict(self, state_dict): |
|
self._training_step = state_dict["training_step"] |
|
|
|
if "decay_step" in state_dict: |
|
self._decay_step = state_dict["decay_step"] |
|
if "optimizer" in state_dict: |
|
self._optimizer.load_state_dict(state_dict["optimizer"]) |
|
|
|
def zero_grad(self, set_to_none=True): |
|
"""Zero the gradients of optimized parameters.""" |
|
self._optimizer.zero_grad() |
|
|
|
|
|
|
|
|
|
def backward(self, loss): |
|
"""Wrapper for backward pass. Some optimizer requires ownership of the |
|
backward pass.""" |
|
if self._fp16 == "legacy": |
|
kwargs = {} |
|
if "update_master_grads" in fn_args(self._optimizer.backward): |
|
kwargs["update_master_grads"] = True |
|
self._optimizer.backward(loss, **kwargs) |
|
elif self.amp: |
|
self._scaler.scale(loss).backward() |
|
elif self._fp16 == "apex.amp": |
|
with apex.amp.scale_loss(loss, self._optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
else: |
|
loss.backward() |
|
|
|
def step(self): |
|
"""Update the model parameters based on current gradients. |
|
|
|
Optionally, will employ gradient modification or update learning |
|
rate. |
|
""" |
|
learning_rate = self.learning_rate() |
|
|
|
if self.amp: |
|
self._scaler.unscale_(self._optimizer) |
|
elif self._fp16 == "legacy": |
|
if hasattr(self._optimizer, "update_master_grads"): |
|
self._optimizer.update_master_grads() |
|
if ( |
|
hasattr(self._optimizer, "clip_master_grads") |
|
and self._max_grad_norm > 0 |
|
): |
|
self._optimizer.clip_master_grads(self._max_grad_norm) |
|
|
|
for group in self._optimizer.param_groups: |
|
group["lr"] = learning_rate |
|
if self._max_grad_norm > 0 and self._fp16 != "legacy": |
|
clip_grad_norm_(group["params"], self._max_grad_norm) |
|
|
|
if self.amp: |
|
|
|
|
|
self._scaler.step(self._optimizer) |
|
|
|
self._scaler.update() |
|
else: |
|
self._optimizer.step() |
|
self._decay_step += 1 |
|
self._training_step += 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
class AdaFactor(torch.optim.Optimizer): |
|
def __init__( |
|
self, |
|
params, |
|
lr=None, |
|
beta1=0.9, |
|
beta2=0.999, |
|
eps1=1e-30, |
|
eps2=1e-3, |
|
cliping_threshold=1, |
|
non_constant_decay=True, |
|
enable_factorization=True, |
|
ams_grad=True, |
|
weight_decay=0, |
|
): |
|
enable_momentum = beta1 != 0 |
|
|
|
if non_constant_decay: |
|
ams_grad = False |
|
|
|
defaults = dict( |
|
lr=lr, |
|
beta1=beta1, |
|
beta2=beta2, |
|
eps1=eps1, |
|
eps2=eps2, |
|
cliping_threshold=cliping_threshold, |
|
weight_decay=weight_decay, |
|
ams_grad=ams_grad, |
|
enable_factorization=enable_factorization, |
|
enable_momentum=enable_momentum, |
|
non_constant_decay=non_constant_decay, |
|
) |
|
|
|
super(AdaFactor, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(AdaFactor, self).__setstate__(state) |
|
|
|
def _experimental_reshape(self, shape): |
|
temp_shape = shape[2:] |
|
if len(temp_shape) == 1: |
|
new_shape = (shape[0], shape[1] * shape[2]) |
|
else: |
|
tmp_div = len(temp_shape) // 2 + len(temp_shape) % 2 |
|
new_shape = ( |
|
shape[0] * functools.reduce(operator.mul, temp_shape[tmp_div:], 1), |
|
shape[1] * functools.reduce(operator.mul, temp_shape[:tmp_div], 1), |
|
) |
|
return new_shape, copy(shape) |
|
|
|
def _check_shape(self, shape): |
|
""" |
|
output1 - True - algorithm for matrix, False - vector; |
|
output2 - need reshape |
|
""" |
|
if len(shape) > 2: |
|
return True, True |
|
elif len(shape) == 2: |
|
return True, False |
|
elif len(shape) == 2 and (shape[0] == 1 or shape[1] == 1): |
|
return False, False |
|
else: |
|
return False, False |
|
|
|
def _rms(self, x): |
|
return sqrt(torch.mean(x.pow(2))) |
|
|
|
def step(self, closure=None): |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
|
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"Adam does not support sparse \ |
|
gradients, use SparseAdam instead" |
|
) |
|
|
|
is_matrix, is_need_reshape = self._check_shape(grad.size()) |
|
new_shape = p.data.size() |
|
if is_need_reshape and group["enable_factorization"]: |
|
new_shape, old_shape = self._experimental_reshape(p.data.size()) |
|
grad = grad.view(new_shape) |
|
|
|
state = self.state[p] |
|
if len(state) == 0: |
|
state["step"] = 0 |
|
if group["enable_momentum"]: |
|
state["exp_avg"] = torch.zeros( |
|
new_shape, dtype=torch.float32, device=p.grad.device |
|
) |
|
|
|
if is_matrix and group["enable_factorization"]: |
|
state["exp_avg_sq_R"] = torch.zeros( |
|
(1, new_shape[1]), dtype=torch.float32, device=p.grad.device |
|
) |
|
state["exp_avg_sq_C"] = torch.zeros( |
|
(new_shape[0], 1), dtype=torch.float32, device=p.grad.device |
|
) |
|
else: |
|
state["exp_avg_sq"] = torch.zeros( |
|
new_shape, dtype=torch.float32, device=p.grad.device |
|
) |
|
if group["ams_grad"]: |
|
state["exp_avg_sq_hat"] = torch.zeros( |
|
new_shape, dtype=torch.float32, device=p.grad.device |
|
) |
|
|
|
if group["enable_momentum"]: |
|
exp_avg = state["exp_avg"] |
|
|
|
if is_matrix and group["enable_factorization"]: |
|
exp_avg_sq_r = state["exp_avg_sq_R"] |
|
exp_avg_sq_c = state["exp_avg_sq_C"] |
|
else: |
|
exp_avg_sq = state["exp_avg_sq"] |
|
|
|
if group["ams_grad"]: |
|
exp_avg_sq_hat = state["exp_avg_sq_hat"] |
|
|
|
state["step"] += 1 |
|
lr_t = group["lr"] |
|
lr_t *= max(group["eps2"], self._rms(p.data)) |
|
|
|
if group["enable_momentum"]: |
|
if group["non_constant_decay"]: |
|
beta1_t = ( |
|
group["beta1"] |
|
* (1 - group["beta1"] ** (state["step"] - 1)) |
|
/ (1 - group["beta1"] ** state["step"]) |
|
) |
|
else: |
|
beta1_t = group["beta1"] |
|
exp_avg.mul_(beta1_t).add_(1 - beta1_t, grad) |
|
|
|
if group["non_constant_decay"]: |
|
beta2_t = ( |
|
group["beta2"] |
|
* (1 - group["beta2"] ** (state["step"] - 1)) |
|
/ (1 - group["beta2"] ** state["step"]) |
|
) |
|
else: |
|
beta2_t = group["beta2"] |
|
|
|
if is_matrix and group["enable_factorization"]: |
|
exp_avg_sq_r.mul_(beta2_t).add_( |
|
1 - beta2_t, |
|
torch.sum( |
|
torch.mul(grad, grad).add_(group["eps1"]), |
|
dim=0, |
|
keepdim=True, |
|
), |
|
) |
|
exp_avg_sq_c.mul_(beta2_t).add_( |
|
1 - beta2_t, |
|
torch.sum( |
|
torch.mul(grad, grad).add_(group["eps1"]), |
|
dim=1, |
|
keepdim=True, |
|
), |
|
) |
|
v = torch.mul(exp_avg_sq_c, exp_avg_sq_r).div_( |
|
torch.sum(exp_avg_sq_r) |
|
) |
|
else: |
|
exp_avg_sq.mul_(beta2_t).addcmul_(1 - beta2_t, grad, grad).add_( |
|
(1 - beta2_t) * group["eps1"] |
|
) |
|
v = exp_avg_sq |
|
|
|
g = grad |
|
if group["enable_momentum"]: |
|
g = torch.div(exp_avg, 1 - beta1_t ** state["step"]) |
|
|
|
if group["ams_grad"]: |
|
torch.max(exp_avg_sq_hat, v, out=exp_avg_sq_hat) |
|
v = exp_avg_sq_hat |
|
u = torch.div( |
|
g, |
|
(torch.div(v, 1 - beta2_t ** state["step"])) |
|
.sqrt() |
|
.add_(group["eps1"]), |
|
) |
|
else: |
|
u = torch.div(g, v.sqrt()) |
|
|
|
u.div_(max(1, self._rms(u) / group["cliping_threshold"])) |
|
p.data.add_( |
|
-lr_t |
|
* ( |
|
u.view(old_shape) |
|
if is_need_reshape and group["enable_factorization"] |
|
else u |
|
) |
|
) |
|
|
|
if group["weight_decay"] != 0: |
|
p.data.add_(-group["weight_decay"] * lr_t, p.data) |
|
|
|
return loss |
|
|
|
|
|
class FusedAdam(torch.optim.Optimizer): |
|
|
|
"""Implements Adam algorithm. Currently GPU-only. |
|
Requires Apex to be installed via |
|
``python setup.py install --cuda_ext --cpp_ext``. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups. |
|
lr (float, optional): learning rate. (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square. |
|
(default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability. (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper 'On the Convergence of Adam and Beyond' |
|
(default: False) NOT SUPPORTED in FusedAdam! |
|
eps_inside_sqrt (boolean, optional): in the 'update parameters' step, |
|
adds eps to the bias-corrected second moment estimate before |
|
evaluating square root instead of adding it to the square root of |
|
second moment estimate as in the original paper. (default: False) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=1e-3, |
|
bias_correction=True, |
|
betas=(0.9, 0.999), |
|
eps=1e-8, |
|
eps_inside_sqrt=False, |
|
weight_decay=0.0, |
|
max_grad_norm=0.0, |
|
amsgrad=False, |
|
): |
|
global fused_adam_cuda |
|
fused_adam_cuda = importlib.import_module("fused_adam_cuda") |
|
|
|
if amsgrad: |
|
raise RuntimeError("AMSGrad variant not supported.") |
|
defaults = dict( |
|
lr=lr, |
|
bias_correction=bias_correction, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
max_grad_norm=max_grad_norm, |
|
) |
|
super(FusedAdam, self).__init__(params, defaults) |
|
self.eps_mode = 0 if eps_inside_sqrt else 1 |
|
|
|
def step( |
|
self, closure=None, grads=None, output_params=None, scale=1.0, grad_norms=None |
|
): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
grads (list of tensors, optional): weight gradient to use for the |
|
optimizer update. If gradients have type torch.half, parameters |
|
are expected to be in type torch.float. (default: None) |
|
output params (list of tensors, optional): A reduced precision copy |
|
of the updated weights written out in addition to the regular |
|
updated weights. Have to be of same type as gradients. |
|
(default: None) |
|
scale (float, optional): factor to divide gradient tensor values |
|
by before applying to weights. (default: 1) |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
if grads is None: |
|
grads_group = [None] * len(self.param_groups) |
|
|
|
|
|
elif isinstance(grads, types.GeneratorType): |
|
grads_group = [grads] |
|
elif type(grads[0]) != list: |
|
grads_group = [grads] |
|
else: |
|
grads_group = grads |
|
|
|
if output_params is None: |
|
output_params_group = [None] * len(self.param_groups) |
|
elif isinstance(output_params, types.GeneratorType): |
|
output_params_group = [output_params] |
|
elif type(output_params[0]) != list: |
|
output_params_group = [output_params] |
|
else: |
|
output_params_group = output_params |
|
|
|
if grad_norms is None: |
|
grad_norms = [None] * len(self.param_groups) |
|
|
|
for group, grads_this_group, output_params_this_group, grad_norm in zip( |
|
self.param_groups, grads_group, output_params_group, grad_norms |
|
): |
|
if grads_this_group is None: |
|
grads_this_group = [None] * len(group["params"]) |
|
if output_params_this_group is None: |
|
output_params_this_group = [None] * len(group["params"]) |
|
|
|
|
|
combined_scale = scale |
|
if group["max_grad_norm"] > 0: |
|
|
|
clip = ((grad_norm / scale) + 1e-6) / group["max_grad_norm"] |
|
if clip > 1: |
|
combined_scale = clip * scale |
|
|
|
bias_correction = 1 if group["bias_correction"] else 0 |
|
|
|
for p, grad, output_param in zip( |
|
group["params"], grads_this_group, output_params_this_group |
|
): |
|
|
|
|
|
if p.grad is None and grad is None: |
|
continue |
|
if grad is None: |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"FusedAdam does not support sparse \ |
|
gradients, please consider \ |
|
SparseAdam instead" |
|
) |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
|
|
state["exp_avg"] = torch.zeros_like(p.data) |
|
|
|
state["exp_avg_sq"] = torch.zeros_like(p.data) |
|
|
|
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] |
|
beta1, beta2 = group["betas"] |
|
|
|
state["step"] += 1 |
|
|
|
out_p = ( |
|
torch.tensor([], dtype=torch.float) |
|
if output_param is None |
|
else output_param |
|
) |
|
fused_adam_cuda.adam( |
|
p.data, |
|
out_p, |
|
exp_avg, |
|
exp_avg_sq, |
|
grad, |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
combined_scale, |
|
state["step"], |
|
self.eps_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
) |
|
return loss |
|
|