File size: 11,891 Bytes
c668e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""Module that contain shard utils for dynamic data."""
import os
from onmt.utils.logging import logger
from onmt.constants import CorpusName, CorpusTask
from onmt.transforms import TransformPipe
from onmt.inputters.text_utils import process, parse_features, append_features_to_text
from contextlib import contextmanager
import itertools


@contextmanager
def exfile_open(filename, *args, **kwargs):
    """Extended file opener enables open(filename=None).

    This context manager enables open(filename=None) as well as regular file.
    filename None will produce endlessly None for each iterate,
    while filename with valid path will produce lines as usual.

    Args:
        filename (str|None): a valid file path or None;
        *args: args relate to open file using codecs;
        **kwargs: kwargs relate to open file using codecs.

    Yields:
        `None` repeatly if filename==None,
        else yield from file specified in `filename`.
    """
    if filename is None:
        from itertools import repeat

        _file = repeat(None)
    else:
        import codecs

        _file = codecs.open(filename, *args, **kwargs)
    yield _file
    if filename is not None and _file:
        _file.close()


class ParallelCorpus(object):
    """A parallel corpus file pair that can be loaded to iterate."""

    def __init__(
        self, name, src, tgt, align=None, n_src_feats=0, src_feats_defaults=None
    ):
        """Initialize src & tgt side file path."""
        self.id = name
        self.src = src
        self.tgt = tgt
        self.align = align
        self.n_src_feats = n_src_feats
        self.src_feats_defaults = src_feats_defaults

    def load(self, offset=0, stride=1):
        """
        Load file and iterate by lines.
        `offset` and `stride` allow to iterate only on every
        `stride` example, starting from `offset`.
        """

        def make_ex(sline, tline, align):
            sline, sfeats = parse_features(
                sline,
                n_feats=self.n_src_feats,
                defaults=self.src_feats_defaults,
            )
            # 'src_original' and 'tgt_original' store the
            # original line before tokenization. These
            # fields are used later on in the feature
            # transforms.
            example = {
                "src": sline,
                "tgt": tline,
                "src_original": sline,
                "tgt_original": tline,
            }
            if align is not None:
                example["align"] = align
            if sfeats is not None:
                example["src_feats"] = [f for f in sfeats]
            return example

        if isinstance(self.src, list):
            fs = self.src
            ft = [] if self.tgt is None else self.tgt
            fa = [] if self.align is None else self.align
            for i, (sline, tline, align) in enumerate(
                itertools.zip_longest(fs, ft, fa)
            ):
                if (i // stride) % stride == offset:
                    yield make_ex(sline, tline, align)
        else:
            with exfile_open(self.src, mode="rb") as fs, exfile_open(
                self.tgt, mode="rb"
            ) as ft, exfile_open(self.align, mode="rb") as fa:
                for i, (sline, tline, align) in enumerate(zip(fs, ft, fa)):
                    if (i // stride) % stride == offset:
                        if tline is not None:
                            tline = tline.decode("utf-8")
                        if align is not None:
                            align = align.decode("utf-8")
                        yield make_ex(sline.decode("utf-8"), tline, align)

    def __str__(self):
        cls_name = type(self).__name__
        return (
            f"{cls_name}({self.id}, {self.src}, {self.tgt}, "
            f"align={self.align}, "
            f"n_src_feats={self.n_src_feats}, "
            f'src_feats_defaults="{self.src_feats_defaults}")'
        )


def get_corpora(opts, task=CorpusTask.TRAIN, src=None, tgt=None, align=None):
    corpora_dict = {}
    if task == CorpusTask.TRAIN:
        for corpus_id, corpus_dict in opts.data.items():
            if corpus_id != CorpusName.VALID:
                corpora_dict[corpus_id] = ParallelCorpus(
                    corpus_id,
                    corpus_dict["path_src"],
                    corpus_dict["path_tgt"],
                    # corpus_dict["path_align"],            ### new adding 
                    n_src_feats=opts.n_src_feats,
                    src_feats_defaults=opts.src_feats_defaults,
                )
    elif task == CorpusTask.VALID:
        if CorpusName.VALID in opts.data.keys():
            corpora_dict[CorpusName.VALID] = ParallelCorpus(
                CorpusName.VALID,
                opts.data[CorpusName.VALID]["path_src"],
                opts.data[CorpusName.VALID]["path_tgt"],
                # opts.data[CorpusName.VALID]["path_align"], ### new adding 
                n_src_feats=opts.n_src_feats,
                src_feats_defaults=opts.src_feats_defaults,
            )
        else:
            return None
    else:
        corpora_dict[CorpusName.INFER] = ParallelCorpus(
            CorpusName.INFER,
            src if src else opts.src,
            tgt if tgt else opts.tgt,
            align if align else None,
            n_src_feats=opts.n_src_feats,
            src_feats_defaults=opts.src_feats_defaults,
        )
    return corpora_dict


class ParallelCorpusIterator(object):
    """An iterator dedicated to ParallelCorpus.

    Args:
        corpus (ParallelCorpus): corpus to iterate;
        transform (TransformPipe): transforms to be applied to corpus;
        skip_empty_level (str): security level when encouter empty line;
        stride (int): iterate corpus with this line stride;
        offset (int): iterate corpus with this line offset.
    """

    def __init__(
        self, corpus, transform, skip_empty_level="warning", stride=1, offset=0
    ):
        self.cid = corpus.id
        self.corpus = corpus
        self.transform = transform
        if skip_empty_level not in ["silent", "warning", "error"]:
            raise ValueError(f"Invalid argument skip_empty_level={skip_empty_level}")
        self.skip_empty_level = skip_empty_level
        self.stride = stride
        self.offset = offset

    def _tokenize(self, stream):
        for example in stream:
            example["src"] = example["src"].strip("\n").split()
            example["src_original"] = example["src_original"].strip("\n").split()
            if "src_feats" in example:
                example["src_feats"] = [
                    feat.strip("\n").split() for feat in example["src_feats"]
                ]
            if example["tgt"] is not None:
                example["tgt"] = example["tgt"].strip("\n").split()
                example["tgt_original"] = example["tgt_original"].strip("\n").split()
            if "align" in example:
                example["align"] = example["align"].strip("\n").split()
            yield example

    def _transform(self, stream):
        for example in stream:
            # NOTE: moved to dynamic_iterator.py cf process()
            # item = self.transform.apply(
            # example, is_train=self.infinitely, corpus_name=self.cid)
            item = (example, self.transform, self.cid)
            if item is not None:
                yield item
        report_msg = self.transform.stats()
        if report_msg != "":
            logger.info(
                "* Transform statistics for {}({:.2f}%):\n{}\n".format(
                    self.cid, 100 / self.stride, report_msg
                )
            )

    def _add_index(self, stream):
        for i, item in enumerate(stream):
            example = item[0]
            line_number = i * self.stride + self.offset
            example["indices"] = line_number
            if example["tgt"] is not None:
                if (
                    len(example["src"]) == 0
                    or len(example["tgt"]) == 0
                    or ("align" in example and example["align"] == 0)
                ):
                    # empty example: skip
                    empty_msg = f"Empty line  in {self.cid}#{line_number}."
                    if self.skip_empty_level == "error":
                        raise IOError(empty_msg)
                    elif self.skip_empty_level == "warning":
                        logger.warning(empty_msg)
                    if len(example["src"]) == 0 and len(example["tgt"]) == 0:
                        yield item
                    continue
            yield item

    def __iter__(self):
        corpus_stream = self.corpus.load(stride=self.stride, offset=self.offset)
        tokenized_corpus = self._tokenize(corpus_stream)
        transformed_corpus = self._transform(tokenized_corpus)
        indexed_corpus = self._add_index(transformed_corpus)
        yield from indexed_corpus


def build_corpora_iters(
    corpora, transforms, corpora_info, skip_empty_level="warning", stride=1, offset=0
):
    """Return `ParallelCorpusIterator` for all corpora defined in opts."""
    corpora_iters = dict()
    for c_id, corpus in corpora.items():
        transform_names = corpora_info[c_id].get("transforms", [])
        corpus_transform = [
            transforms[name] for name in transform_names if name in transforms
        ]
        transform_pipe = TransformPipe.build_from(corpus_transform)
        corpus_iter = ParallelCorpusIterator(
            corpus,
            transform_pipe,
            skip_empty_level=skip_empty_level,
            stride=stride,
            offset=offset,
        )
        corpora_iters[c_id] = corpus_iter
    return corpora_iters


def save_transformed_sample(opts, transforms, n_sample=3):
    """Save transformed data sample as specified in opts."""

    if n_sample == -1:
        logger.info(f"n_sample={n_sample}: Save full transformed corpus.")
    elif n_sample == 0:
        logger.info(f"n_sample={n_sample}: no sample will be saved.")
        return
    elif n_sample > 0:
        logger.info(f"Save {n_sample} transformed example/corpus.")
    else:
        raise ValueError(f"n_sample should >= -1, get {n_sample}.")

    corpora = get_corpora(opts, CorpusTask.TRAIN)
    datasets_iterables = build_corpora_iters(
        corpora, transforms, opts.data, skip_empty_level=opts.skip_empty_level
    )
    sample_path = os.path.join(os.path.dirname(opts.save_data), CorpusName.SAMPLE)
    os.makedirs(sample_path, exist_ok=True)
    for c_name, c_iter in datasets_iterables.items():
        dest_base = os.path.join(sample_path, "{}.{}".format(c_name, CorpusName.SAMPLE))
        with open(dest_base + ".src", "w", encoding="utf-8") as f_src, open(
            dest_base + ".tgt", "w", encoding="utf-8"
        ) as f_tgt:
            bucket = []
            for i, ex in enumerate(c_iter):
                if i > n_sample:
                    break
                else:
                    bucket.append(ex)
            pro_bucket = process(CorpusTask.TRAIN, bucket)
            if pro_bucket is not None:
                for maybe_example in pro_bucket:
                    if maybe_example is not None:
                        src_line, tgt_line = (
                            maybe_example["src"]["src"],
                            maybe_example["tgt"]["tgt"],
                        )

                        if "feats" in maybe_example["src"]:
                            src_feats_lines = maybe_example["src"]["feats"]
                        else:
                            src_feats_lines = []

                        src_pretty_line = append_features_to_text(
                            src_line, src_feats_lines
                        )

                        f_src.write(src_pretty_line + "\n")
                        f_tgt.write(tgt_line + "\n")