File size: 23,366 Bytes
c668e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
"""Transforms relate to tokenization/subword."""
import re
from onmt.utils.logging import logger
from onmt.transforms import register_transform
from .transform import Transform, ObservableStats
from onmt.constants import DefaultTokens


class TokenizerTransform(Transform):
    """Tokenizer transform abstract class."""

    def __init__(self, opts):
        """Initialize necessary options for Tokenizer."""
        super().__init__(opts)

    @classmethod
    def add_options(cls, parser):
        """Available options relate to Subword."""
        # Sharing options among `TokenizerTransform`s, same name conflict in
        # this scope will be resolved by remove previous occurrence in parser
        group = parser.add_argument_group(
            "Transform/Subword/Common",
            conflict_handler="resolve",
            description=".. Attention:: Common options shared by all subword transforms. "  # noqa: E501
            "Including options for indicate subword model path, "
            "`Subword Regularization <https://arxiv.org/abs/1804.10959>`_"
            "/`BPE-Dropout <https://arxiv.org/abs/1910.13267>`_, "
            "and `Vocabulary Restriction <https://github.com/rsennrich/subword-nmt#best-practice-advice-for-byte-pair-encoding-in-nmt>`__.",  # noqa: E501
        )  # noqa: E501
        group.add(
            "-src_subword_model",
            "--src_subword_model",
            help="Path of subword model for src (or shared).",
        )
        group.add(
            "-tgt_subword_model",
            "--tgt_subword_model",
            help="Path of subword model for tgt.",
        )

        # subword regularization(or BPE dropout) options:
        group.add(
            "-src_subword_nbest",
            "--src_subword_nbest",
            type=int,
            default=1,
            help="Number of candidates in subword regularization. "
            "Valid for unigram sampling, "
            "invalid for BPE-dropout. "
            "(source side)",
        )
        group.add(
            "-tgt_subword_nbest",
            "--tgt_subword_nbest",
            type=int,
            default=1,
            help="Number of candidates in subword regularization. "
            "Valid for unigram sampling, "
            "invalid for BPE-dropout. "
            "(target side)",
        )
        group.add(
            "-src_subword_alpha",
            "--src_subword_alpha",
            type=float,
            default=0,
            help="Smoothing parameter for sentencepiece unigram "
            "sampling, and dropout probability for BPE-dropout. "
            "(source side)",
        )
        group.add(
            "-tgt_subword_alpha",
            "--tgt_subword_alpha",
            type=float,
            default=0,
            help="Smoothing parameter for sentencepiece unigram "
            "sampling, and dropout probability for BPE-dropout. "
            "(target side)",
        )

        # subword vocabulary restriction options:
        group.add(
            "-src_subword_vocab",
            "--src_subword_vocab",
            type=str,
            default="",
            help="Path to the vocabulary file for src subword. "
            "Format: <word>\t<count> per line.",
        )
        group.add(
            "-tgt_subword_vocab",
            "--tgt_subword_vocab",
            type=str,
            default="",
            help="Path to the vocabulary file for tgt subword. "
            "Format: <word>\t<count> per line.",
        )
        group.add(
            "-src_vocab_threshold",
            "--src_vocab_threshold",
            type=int,
            default=0,
            help="Only produce src subword in src_subword_vocab with "
            " frequency >= src_vocab_threshold.",
        )
        group.add(
            "-tgt_vocab_threshold",
            "--tgt_vocab_threshold",
            type=int,
            default=0,
            help="Only produce tgt subword in tgt_subword_vocab with "
            " frequency >= tgt_vocab_threshold.",
        )

    @classmethod
    def _validate_options(cls, opts):
        """Extra checks for Subword options."""
        assert (
            0 <= opts.src_subword_alpha <= 1
        ), "src_subword_alpha should be in the range [0, 1]"
        assert (
            0 <= opts.tgt_subword_alpha <= 1
        ), "tgt_subword_alpha should be in the range [0, 1]"

    def _parse_opts(self):
        self.share_vocab = self.opts.share_vocab
        self.src_subword_model = self.opts.src_subword_model
        self.tgt_subword_model = self.opts.tgt_subword_model
        self.src_subword_nbest = self.opts.src_subword_nbest
        self.tgt_subword_nbest = self.opts.tgt_subword_nbest
        self.src_subword_alpha = self.opts.src_subword_alpha
        self.tgt_subword_alpha = self.opts.tgt_subword_alpha
        self.src_subword_vocab = self.opts.src_subword_vocab
        self.tgt_subword_vocab = self.opts.tgt_subword_vocab
        self.src_vocab_threshold = self.opts.src_vocab_threshold
        self.tgt_vocab_threshold = self.opts.tgt_vocab_threshold

    def _repr_args(self):
        """Return str represent key arguments for TokenizerTransform."""
        kwargs = {
            "share_vocab": self.share_vocab,
            "src_subword_model": self.src_subword_model,
            "tgt_subword_model": self.tgt_subword_model,
            "src_subword_alpha": self.src_subword_alpha,
            "tgt_subword_alpha": self.tgt_subword_alpha,
            "src_subword_vocab": self.src_subword_vocab,
            "tgt_subword_vocab": self.tgt_subword_vocab,
            "src_vocab_threshold": self.src_vocab_threshold,
            "tgt_vocab_threshold": self.tgt_vocab_threshold,
        }
        return ", ".join([f"{kw}={arg}" for kw, arg in kwargs.items()])

    def tokenize_string(self, string, side="src", is_train=False):
        raise NotImplementedError

    def _tokenize(self, tokens, side="src", is_train=False):
        """Tokenize a list of words."""
        # This method embeds a custom logic to correctly handle certain placeholders
        # in case the tokenizer doesn't preserve them.
        sentence = " ".join(tokens).replace(DefaultTokens.SEP, "\n")
        # Locate the end-of-sentence placeholders.
        sent_list = sentence.split(DefaultTokens.EOS)
        # Tokenize each sentence separately.
        segmented = []
        for _sentence in sent_list:
            # Locate the mask-before placeholders
            # (to zero-out the prompt loss during LM finetuning).
            _sentence_chunks = _sentence.split(DefaultTokens.MASK_BEFORE)
            # Tokenize each chunk separately and insert the padding token.
            # between each sequence of tokens.
            _sentence_tokens = []
            for _chunk in _sentence_chunks:
                _sentence_tokens += self.tokenize_string(_chunk, side, is_train) + [
                    DefaultTokens.PAD
                ]
            # Re-insert the eos token.
            segmented += _sentence_tokens[:-1] + [DefaultTokens.EOS]
        return segmented[:-1]

    def apply(self, example, is_train=False, stats=None, **kwargs):
        """Apply subword-based tokenenization to src & tgt."""
        src_out = self._tokenize(example["src"], "src", is_train)
        if example["tgt"] is not None:
            tgt_out = self._tokenize(example["tgt"], "tgt", is_train)
            if stats is not None:
                n_words = len(example["src"]) + len(example["tgt"])
                n_subwords = len(src_out) + len(tgt_out)
                stats.update(SubwordStats(n_subwords, n_words))
        else:
            tgt_out = None
            if stats is not None:
                n_words = len(example["src"])
                n_subwords = len(src_out)
                stats.update(SubwordStats(n_subwords, n_words))
        example["src"], example["tgt"] = src_out, tgt_out
        return example


class SubwordStats(ObservableStats):
    """Runing statistics for counting tokens before/after subword transform."""

    __slots__ = ["subwords", "words"]

    def __init__(self, subwords: int, words: int):
        self.subwords = subwords
        self.words = words

    def update(self, other: "SubwordStats"):
        self.subwords += other.subwords
        self.words += other.words

    def __str__(self) -> str:
        return "{}: {} -> {} tokens".format(self.name(), self.words, self.subwords)


@register_transform(name="sentencepiece")
class SentencePieceTransform(TokenizerTransform):
    """SentencePiece subword transform class."""

    def __init__(self, opts):
        """Initialize necessary options for sentencepiece."""
        super().__init__(opts)

    def _set_seed(self, seed):
        """set seed to ensure reproducibility."""
        import sentencepiece as spm

        spm.set_random_generator_seed(seed)

    def warm_up(self, vocabs=None):
        """Load subword models."""
        super().warm_up(None)
        import sentencepiece as spm

        load_src_model = spm.SentencePieceProcessor()
        load_src_model.Load(self.src_subword_model)
        _diff_vocab = (
            self.src_subword_vocab != self.tgt_subword_vocab
            or self.src_vocab_threshold != self.tgt_vocab_threshold
        )
        if self.src_subword_vocab != "" and self.src_vocab_threshold > 0:
            load_src_model.LoadVocabulary(
                self.src_subword_vocab, self.src_vocab_threshold
            )
        if self.share_vocab and not _diff_vocab:
            self.load_models = {"src": load_src_model, "tgt": load_src_model}
        else:
            load_tgt_model = spm.SentencePieceProcessor()
            load_tgt_model.Load(self.tgt_subword_model)
            if self.tgt_subword_vocab != "" and self.tgt_vocab_threshold > 0:
                load_tgt_model.LoadVocabulary(
                    self.tgt_subword_vocab, self.tgt_vocab_threshold
                )
            self.load_models = {"src": load_src_model, "tgt": load_tgt_model}

    def tokenize_string(self, string, side="src", is_train=False):
        """Apply subword sampling or deterministic subwording"""
        sp_model = self.load_models[side]
        nbest_size = self.tgt_subword_nbest if side == "tgt" else self.src_subword_nbest
        if is_train is False or nbest_size in [0, 1]:
            # derterministic subwording
            tokens = sp_model.encode(string, out_type=str)
        else:
            # subword sampling when nbest_size > 1 or -1
            # alpha should be 0.0 < alpha < 1.0
            alpha = self.tgt_subword_alpha if side == "tgt" else self.src_subword_alpha
            tokens = sp_model.encode(
                string,
                out_type=str,
                enable_sampling=True,
                alpha=alpha,
                nbest_size=nbest_size,
            )
        return tokens

    def _detokenize(self, tokens, side="src"):
        """Apply SentencePiece Detokenizer"""
        sp_model = self.load_models[side]
        return sp_model.DecodePieces(tokens).replace("\n", DefaultTokens.SEP)

    def apply_reverse(self, translated):
        """Apply SentencePiece Detokenizer."""
        if isinstance(translated, list):
            return self._detokenize(translated, "tgt")
        else:
            return self._detokenize(translated.split(), "tgt")

    def _repr_args(self):
        """Return str represent key arguments for class."""
        kwargs_str = super()._repr_args()
        additional_str = "src_subword_nbest={}, tgt_subword_nbest={}".format(
            self.src_subword_nbest, self.tgt_subword_nbest
        )
        return kwargs_str + ", " + additional_str


@register_transform(name="bpe")
class BPETransform(TokenizerTransform):
    """subword_nmt: official BPE subword transform class."""

    def __init__(self, opts):
        """Initialize necessary options for subword_nmt."""
        super().__init__(opts)

    def _parse_opts(self):
        super()._parse_opts()
        self.dropout = {"src": self.src_subword_alpha, "tgt": self.tgt_subword_alpha}

    def _set_seed(self, seed):
        """set seed to ensure reproducibility."""
        import random

        random.seed(seed)

    def warm_up(self, vocabs=None):
        """Load subword models."""
        super().warm_up(None)
        from subword_nmt.apply_bpe import BPE, read_vocabulary

        # Load vocabulary file if provided and set threshold
        src_vocabulary, tgt_vocabulary = None, None
        if self.src_subword_vocab != "" and self.src_vocab_threshold > 0:
            with open(self.src_subword_vocab, encoding="utf-8") as _sv:
                src_vocabulary = read_vocabulary(_sv, self.src_vocab_threshold)
        if self.tgt_subword_vocab != "" and self.tgt_vocab_threshold > 0:
            with open(self.tgt_subword_vocab, encoding="utf-8") as _tv:
                tgt_vocabulary = read_vocabulary(_tv, self.tgt_vocab_threshold)
        # Load Subword Model
        with open(self.src_subword_model, encoding="utf-8") as src_codes:
            load_src_model = BPE(codes=src_codes, vocab=src_vocabulary)
        if self.share_vocab and (src_vocabulary == tgt_vocabulary):
            self.load_models = {"src": load_src_model, "tgt": load_src_model}
        else:
            with open(self.tgt_subword_model, encoding="utf-8") as tgt_codes:
                load_tgt_model = BPE(codes=tgt_codes, vocab=tgt_vocabulary)
            self.load_models = {"src": load_src_model, "tgt": load_tgt_model}

    def tokenize_string(self, string, side="src", is_train=False):
        """Do bpe subword tokenize."""
        tokens = string.split(" ")
        bpe_model = self.load_models[side]
        dropout = self.dropout[side] if is_train else 0.0
        segmented = bpe_model.segment_tokens(tokens, dropout=dropout)
        return segmented

    def _detokenize(self, tokens, side="src", is_train=False):
        """ "Apply bpe subword detokenizer"""
        detokenized = re.sub(r"(@@ )|(@@ ?$)", r"", " ".join(tokens))
        return detokenized

    def apply_reverse(self, translated):
        """Apply bpe subword detokenizer"""
        if isinstance(translated, list):
            return self._detokenize(translated, "tgt")
        else:
            return self._detokenize(translated.split(), "tgt")


@register_transform(name="onmt_tokenize")
class ONMTTokenizerTransform(TokenizerTransform):
    """OpenNMT Tokenizer transform class."""

    def __init__(self, opts):
        """Initialize necessary options for OpenNMT Tokenizer."""
        super().__init__(opts)

    def _set_seed(self, seed):
        """set seed to ensure reproducibility."""
        import pyonmttok

        pyonmttok.set_random_seed(seed)

    @classmethod
    def add_options(cls, parser):
        """Available options relate to Subword."""
        super().add_options(parser)
        group = parser.add_argument_group("Transform/Subword/ONMTTOK")
        group.add(
            "-src_subword_type",
            "--src_subword_type",
            type=str,
            default="none",
            choices=["none", "sentencepiece", "bpe"],
            help="Type of subword model for src (or shared) " "in pyonmttok.",
        )
        group.add(
            "-tgt_subword_type",
            "--tgt_subword_type",
            type=str,
            default="none",
            choices=["none", "sentencepiece", "bpe"],
            help="Type of subword model for tgt in  pyonmttok.",
        )
        group.add(
            "-src_onmttok_kwargs",
            "--src_onmttok_kwargs",
            type=str,
            default="{'mode': 'none'}",
            help="Other pyonmttok options for src in dict string, "
            "except subword related options listed earlier.",
        )
        group.add(
            "-tgt_onmttok_kwargs",
            "--tgt_onmttok_kwargs",
            type=str,
            default="{'mode': 'none'}",
            help="Other pyonmttok options for tgt in dict string, "
            "except subword related options listed earlier.",
        )
        group.add(
            "--gpt2_pretok",
            "-gpt2_pretok",
            action="store_true",
            default=False,
            help="Preprocess sentence with byte-level mapping",
        )

    @classmethod
    def _validate_options(cls, opts):
        """Extra checks for OpenNMT Tokenizer options."""
        super()._validate_options(opts)
        src_kwargs_dict = eval(opts.src_onmttok_kwargs)
        tgt_kwargs_dict = eval(opts.tgt_onmttok_kwargs)
        if not isinstance(src_kwargs_dict, dict):
            raise ValueError("-src_onmttok_kwargs isn't a dict valid string.")
        if not isinstance(tgt_kwargs_dict, dict):
            raise ValueError("-tgt_onmttok_kwargs isn't a dict valid string.")
        opts.src_onmttok_kwargs = src_kwargs_dict
        opts.tgt_onmttok_kwargs = tgt_kwargs_dict

    def _parse_opts(self):
        super()._parse_opts()
        self.src_subword_type = self.opts.src_subword_type
        self.tgt_subword_type = self.opts.tgt_subword_type
        logger.debug(
            "Parsed pyonmttok kwargs for src: {}".format(self.opts.src_onmttok_kwargs)
        )
        logger.debug(
            "Parsed pyonmttok kwargs for tgt: {}".format(self.opts.tgt_onmttok_kwargs)
        )
        self.src_other_kwargs = self.opts.src_onmttok_kwargs
        self.tgt_other_kwargs = self.opts.tgt_onmttok_kwargs
        self.gpt2_pretok = self.opts.gpt2_pretok

    @classmethod
    def get_specials(cls, opts):
        src_specials, tgt_specials = [], []
        if opts.src_onmttok_kwargs.get("case_markup", False):
            _case_specials = [
                "⦅mrk_case_modifier_C⦆",
                "⦅mrk_begin_case_region_U⦆",
                "⦅mrk_end_case_region_U⦆",
            ]
            for src_spec in _case_specials:
                src_specials.append(src_spec)
        if opts.tgt_onmttok_kwargs.get("case_markup", False):
            _case_specials = [
                "⦅mrk_case_modifier_C⦆",
                "⦅mrk_begin_case_region_U⦆",
                "⦅mrk_end_case_region_U⦆",
            ]
            for tgt_spec in _case_specials:
                tgt_specials.append(tgt_spec)
        return (src_specials, tgt_specials)

    def _get_subword_kwargs(self, side="src"):
        """Return a dict containing kwargs relate to `side` subwords."""
        subword_type = self.tgt_subword_type if side == "tgt" else self.src_subword_type
        subword_model = (
            self.tgt_subword_model if side == "tgt" else self.src_subword_model
        )
        subword_nbest = (
            self.tgt_subword_nbest if side == "tgt" else self.src_subword_nbest
        )
        subword_alpha = (
            self.tgt_subword_alpha if side == "tgt" else self.src_subword_alpha
        )
        kwopts = dict()
        if subword_type == "bpe":
            kwopts["bpe_model_path"] = subword_model
            kwopts["bpe_dropout"] = subword_alpha
        elif subword_type == "sentencepiece":
            kwopts["sp_model_path"] = subword_model
            kwopts["sp_nbest_size"] = subword_nbest
            kwopts["sp_alpha"] = subword_alpha
        else:
            logger.debug("No subword method will be applied.")
        vocabulary_threshold = (
            self.tgt_vocab_threshold if side == "tgt" else self.src_vocab_threshold
        )
        vocabulary_path = (
            self.tgt_subword_vocab if side == "tgt" else self.src_subword_vocab
        )
        if vocabulary_threshold > 0 and vocabulary_path != "":
            kwopts["vocabulary_path"] = vocabulary_path
            kwopts["vocabulary_threshold"] = vocabulary_threshold
        return kwopts

    def warm_up(self, vocabs=None):
        """Initialize Tokenizer models."""
        super().warm_up(None)
        import pyonmttok

        src_subword_kwargs = self._get_subword_kwargs(side="src")
        src_tokenizer = pyonmttok.Tokenizer(
            **src_subword_kwargs, **self.src_other_kwargs
        )
        tgt_subword_kwargs = self._get_subword_kwargs(side="tgt")
        _diff_vocab = src_subword_kwargs.get(
            "vocabulary_path", ""
        ) != tgt_subword_kwargs.get("vocabulary_path", "") or src_subword_kwargs.get(
            "vocabulary_threshold", 0
        ) != tgt_subword_kwargs.get(
            "vocabulary_threshold", 0
        )
        if self.share_vocab and not _diff_vocab:
            self.load_models = {"src": src_tokenizer, "tgt": src_tokenizer}
        else:
            tgt_subword_kwargs = self._get_subword_kwargs(side="tgt")
            tgt_tokenizer = pyonmttok.Tokenizer(
                **tgt_subword_kwargs, **self.tgt_other_kwargs
            )
            self.load_models = {"src": src_tokenizer, "tgt": tgt_tokenizer}
        if self.gpt2_pretok:
            """
            Returns list of utf-8 byte and a corresponding list of unicode
            strings. The reversible bpe codes work on unicode strings.
            code taken from openai/gpt2
            """
            bs = (
                list(range(ord("!"), ord("~") + 1))
                + list(range(ord("¡"), ord("¬") + 1))
                + list(range(ord("®"), ord("ÿ") + 1))
            )
            cs = bs[:]
            n = 0
            for b in range(2**8):
                if b not in bs:
                    bs.append(b)
                    cs.append(2**8 + n)
                    n += 1
            cs = [chr(n) for n in cs]
            self.maptable = dict(zip(bs, cs))
            self.revtable = {v: k for k, v in self.maptable.items()}

    def tokenize_string(self, sentence, side="src", is_train=False):
        tokenizer = self.load_models[side]
        if self.gpt2_pretok:
            sentence = "".join(
                self.maptable[b]
                for b in sentence.replace(DefaultTokens.SEP, "\n").encode("utf-8")
            )
            segmented = tokenizer(sentence)
        else:
            segmented = tokenizer(sentence)
        return segmented

    def _detokenize(self, tokens, side="src", is_train=False):
        """Do OpenNMT Tokenizer's detokenize."""
        tokenizer = self.load_models[side]
        if self.gpt2_pretok:
            sentence = "".join(tokens)
            detokenized = bytearray([self.revtable[c] for c in sentence]).decode(
                "utf-8", errors="replace"
            )
        else:
            detokenized = tokenizer.detokenize(tokens)
        return detokenized.replace("\n", DefaultTokens.SEP)

    def apply_reverse(self, translated):
        """Apply OpenNMT Tokenizer to src & tgt."""
        if isinstance(translated, list):
            return self._detokenize(translated, "tgt")
        else:
            return self._detokenize(translated.split(), "tgt")

    def _repr_args(self):
        """Return str represent key arguments for class."""
        repr_str = "{}={}".format("share_vocab", self.share_vocab)
        repr_str += ", src_subword_kwargs={}".format(
            self._get_subword_kwargs(side="src")
        )
        repr_str += ", src_onmttok_kwargs={}".format(self.src_other_kwargs)
        repr_str += ", tgt_subword_kwargs={}".format(
            self._get_subword_kwargs(side="tgt")
        )
        repr_str += ", tgt_onmttok_kwargs={}".format(self.tgt_other_kwargs)
        return repr_str