File size: 31,366 Bytes
c668e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
"""
Implementation of "Attention is All You Need" and of
subsequent transformer based architectures
"""

import torch
import torch.nn as nn
from onmt.decoders.decoder import DecoderBase
from onmt.modules import MultiHeadedAttention, AverageAttention
from onmt.modules.position_ffn import PositionwiseFeedForward
from onmt.modules.position_ffn import ActivationFunction
from onmt.utils.misc import sequence_mask
from onmt.modules.rmsnorm import RMSNorm


class TransformerDecoderLayerBase(nn.Module):
    def __init__(
        self,
        d_model,
        heads,
        d_ff,
        dropout,
        attention_dropout,
        self_attn_type="scaled-dot",
        max_relative_positions=0,
        relative_positions_buckets=0,
        aan_useffn=False,
        full_context_alignment=False,
        alignment_heads=0,
        pos_ffn_activation_fn=ActivationFunction.relu,
        add_qkvbias=False,
        num_kv=0,
        add_ffnbias=True,
        parallel_residual=False,
        shared_layer_norm=False,
        layer_norm="standard",
        norm_eps=1e-6,
        use_ckpting=[],
        parallel_gpu=1,
    ):
        """
        Args:
            d_model (int): the dimension of keys/values/queries in
                :class:`MultiHeadedAttention`, also the input size of
                the first-layer of the :class:`PositionwiseFeedForward`.
            heads (int): the number of heads for MultiHeadedAttention.
            d_ff (int): the second-layer of the
                :class:`PositionwiseFeedForward`.
            dropout (float): dropout in residual, self-attn(dot) and
                feed-forward
            attention_dropout (float): dropout in context_attn  (and
                self-attn(avg))
            self_attn_type (string): type of self-attention scaled-dot,
                average
            max_relative_positions (int):
                Max distance between inputs in relative positions
                representations
            aan_useffn (bool): Turn on the FFN layer in the AAN decoder
            full_context_alignment (bool):
                whether enable an extra full context decoder forward for
                alignment
            alignment_heads (int):
                N. of cross attention heads to use for alignment guiding
            pos_ffn_activation_fn (ActivationFunction):
                activation function choice for PositionwiseFeedForward layer
            add_qkvbias (bool): whether to add bias to the Key/Value nn.Linear
            layer_norm (string): type of layer normalization standard/rms
            norm_eps (float): layer norm epsilon

        """
        super(TransformerDecoderLayerBase, self).__init__()

        self.self_attn_type = self_attn_type
        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=attention_dropout,
                max_relative_positions=max_relative_positions,
                relative_positions_buckets=relative_positions_buckets,
                attn_type="self",
                add_qkvbias=add_qkvbias,
                num_kv=num_kv,
                use_ckpting=use_ckpting,
                parallel_gpu=parallel_gpu,
            )
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(
                d_model, dropout=attention_dropout, aan_useffn=aan_useffn
            )

        self.feed_forward = PositionwiseFeedForward(
            d_model,
            d_ff,
            dropout,
            pos_ffn_activation_fn,
            add_ffnbias,
            parallel_residual,
            layer_norm,
            norm_eps,
            use_ckpting=use_ckpting,
            parallel_gpu=parallel_gpu,
        )
        self.parallel_residual = parallel_residual
        self.shared_layer_norm = shared_layer_norm
        if layer_norm == "standard":
            self.layer_norm_1 = nn.LayerNorm(d_model, eps=norm_eps)
            if parallel_residual and not shared_layer_norm:
                self.layer_norm_res = nn.LayerNorm(d_model, eps=norm_eps)
        elif layer_norm == "rms":
            self.layer_norm_1 = RMSNorm(d_model, eps=norm_eps)
            if parallel_residual and not shared_layer_norm:
                self.layer_norm_res = RMSNorm(d_model, eps=norm_eps)
        else:
            raise ValueError(f"{layer_norm} layer norm type is not supported")

        self.dropout = nn.Dropout(dropout)
        self.full_context_alignment = full_context_alignment
        self.alignment_heads = alignment_heads

    def forward(self, *args, **kwargs):
        """Extend `_forward` for (possibly) multiple decoder pass:
        Always a default (future masked) decoder forward pass,
        Possibly a second future aware decoder pass for joint learn
        full context alignement, :cite:`garg2019jointly`.

        Args:
            * All arguments of _forward, of which
            with_align (bool): needed to compute attn_align
            return_attn (bool): to force MHA to return attns

        Returns:
            (FloatTensor, FloatTensor, FloatTensor or None):

            * layer_out ``(batch_size, T, model_dim)``
            * top_attn ``(batch_size, T, src_len)``
            * attn_align ``(batch_size, T, src_len)`` or None
        """
        with_align = kwargs.pop("with_align", False)
        layer_out, attns = self._forward(*args, **kwargs)
        top_attn = None if attns is None else attns[:, 0, :, :].contiguous()
        attn_align = None
        if with_align:
            if self.full_context_alignment:
                # return _, (B, Q_len, K_len)
                _, attns = self._forward(*args, **kwargs, future=True)

            if self.alignment_heads > 0:
                attns = attns[:, : self.alignment_heads, :, :].contiguous()
            # layer average attention across heads, get ``(B, Q, K)``
            # Case 1: no full_context, no align heads -> layer avg baseline
            # Case 2: no full_context, 1 align heads -> guided align
            # Case 3: full_context, 1 align heads -> full cte guided align
            attn_align = attns.mean(dim=1)
        return layer_out, top_attn, attn_align

    def update_dropout(self, dropout, attention_dropout):
        self.self_attn.update_dropout(attention_dropout)
        self.feed_forward.update_dropout(dropout)
        self.dropout.p = dropout

    def _forward(self, *args, **kwargs):
        raise NotImplementedError

    def _compute_dec_mask(self, tgt_pad_mask, future):
        tgt_len = tgt_pad_mask.size(-1)
        if not future:  # apply future_mask, result mask in (B, T, T)
            future_mask = torch.ones(
                [tgt_len, tgt_len],
                device=tgt_pad_mask.device,
                dtype=torch.uint8,
            )
            future_mask = future_mask.triu_(1).view(1, tgt_len, tgt_len)
            # BoolTensor was introduced in pytorch 1.2
            try:
                future_mask = future_mask.bool()
            except AttributeError:
                pass
            dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)
        else:  # only mask padding, result mask in (B, 1, T)
            dec_mask = tgt_pad_mask
        return dec_mask

    def _forward_self_attn(self, norm_layer_in, dec_mask, step, return_attn=False):
        if self.self_attn_type == "scaled-dot":
            return self.self_attn(
                norm_layer_in,
                norm_layer_in,
                norm_layer_in,
                mask=dec_mask,
                step=step,
                return_attn=return_attn,
            )
        elif self.self_attn_type == "average":
            return self.self_attn(norm_layer_in, mask=dec_mask, step=step)
        else:
            raise ValueError(f"self attention {type(self.self_attn)} not supported")


class TransformerDecoderLayer(TransformerDecoderLayerBase):
    """Transformer Decoder layer block in Pre-Norm style.
    Pre-Norm style is an improvement w.r.t. Original paper's Post-Norm style,
    providing better converge speed and performance. This is also the actual
    implementation in tensor2tensor and also avalable in fairseq.
    See https://tunz.kr/post/4 and :cite:`DeeperTransformer`.

    """

    def __init__(
        self,
        d_model,
        heads,
        d_ff,
        dropout,
        attention_dropout,
        self_attn_type="scaled-dot",
        max_relative_positions=0,
        relative_positions_buckets=0,
        aan_useffn=False,
        full_context_alignment=False,
        alignment_heads=0,
        pos_ffn_activation_fn=ActivationFunction.relu,
        add_qkvbias=False,
        num_kv=0,
        add_ffnbias=True,
        parallel_residual=False,
        shared_layer_norm=False,
        layer_norm="standard",
        norm_eps=1e-6,
        use_ckpting=[],
        parallel_gpu=1,
    ):
        """
        Args:
            See TransformerDecoderLayerBase
        """
        super(TransformerDecoderLayer, self).__init__(
            d_model,
            heads,
            d_ff,
            dropout,
            attention_dropout,
            self_attn_type,
            max_relative_positions,
            relative_positions_buckets,
            aan_useffn,
            full_context_alignment,
            alignment_heads,
            pos_ffn_activation_fn=pos_ffn_activation_fn,
            add_qkvbias=add_qkvbias,
            num_kv=num_kv,
            add_ffnbias=add_ffnbias,
            parallel_residual=parallel_residual,
            shared_layer_norm=shared_layer_norm,
            layer_norm=layer_norm,
            norm_eps=norm_eps,
            use_ckpting=use_ckpting,
            parallel_gpu=parallel_gpu,
        )
        self.context_attn = MultiHeadedAttention(
            heads,
            d_model,
            dropout=attention_dropout,
            attn_type="context",
            add_qkvbias=add_qkvbias,
            num_kv=num_kv,
            use_ckpting=use_ckpting,
            parallel_gpu=parallel_gpu,
        )
        if layer_norm == "standard":
            self.layer_norm_2 = nn.LayerNorm(d_model, eps=norm_eps)
        elif layer_norm == "rms":
            self.layer_norm_2 = RMSNorm(d_model, eps=norm_eps)
        else:
            raise ValueError(f"{layer_norm} layer norm type is not supported")

    def update_dropout(self, dropout, attention_dropout):
        super(TransformerDecoderLayer, self).update_dropout(dropout, attention_dropout)
        self.context_attn.update_dropout(attention_dropout)

    def _forward(
        self,
        layer_in,
        enc_out,
        src_pad_mask,
        tgt_pad_mask,
        step=None,
        future=False,
        return_attn=False,
    ):
        """A naive forward pass for transformer decoder.

        # T: could be 1 in the case of stepwise decoding or tgt_len

        Args:
            layer_in (FloatTensor): ``(batch_size, T, model_dim)``
            enc_out (FloatTensor): ``(batch_size, src_len, model_dim)``
            src_pad_mask (bool): ``(batch_size, 1, src_len)``
            tgt_pad_mask (bool): ``(batch_size, 1, T)``
            step (int or None): stepwise decoding counter
            future (bool): If set True, do not apply future_mask.
            return_attn (bool) : if set True requires attns output

        Returns:
            (FloatTensor, FloatTensor):

            * layer_out ``(batch_size, T, model_dim)``
            * attns ``(batch_size, head, T, src_len)``

        """
        dec_mask = None
        src_pad_mask = src_pad_mask.unsqueeze(1)  # [B,1,1,slen]

        if layer_in.size(1) > 1:
            # masking is necessary when sequence length is greater than one
            dec_mask = self._compute_dec_mask(tgt_pad_mask, future)
            dec_mask = dec_mask.unsqueeze(1)
            dec_mask = dec_mask.expand(-1, -1, dec_mask.size(3), -1)
            src_pad_mask = src_pad_mask.expand(-1, -1, dec_mask.size(3), -1)
            # mask now are (batch x 1 x tlen x s or t len)
            # 1 = heads to be expanded in MHA

        norm_layer_in = self.layer_norm_1(layer_in)

        self_attn, _ = self._forward_self_attn(norm_layer_in, dec_mask, step)

        if self.parallel_residual:
            ctx_attn, attns = self.context_attn(
                enc_out,
                enc_out,
                norm_layer_in,
                mask=src_pad_mask,
                return_attn=return_attn,
            )
            # feed_forward applies residual, so we remove and apply residual with un-normed
            layer_out = (
                self.feed_forward(norm_layer_in)
                - norm_layer_in
                + layer_in
                + self.dropout(self_attn)
                + ctx_attn
            )
        else:
            query = self.dropout(self_attn) + layer_in
            norm_query = self.layer_norm_2(query)
            ctx_attn, attns = self.context_attn(
                enc_out, enc_out, norm_query, mask=src_pad_mask, return_attn=return_attn
            )
            layer_out = self.feed_forward(self.dropout(ctx_attn) + query)

        return layer_out, attns


class TransformerDecoderBase(DecoderBase):
    def __init__(
        self, d_model, copy_attn, embeddings, alignment_layer, layer_norm, norm_eps
    ):
        super(TransformerDecoderBase, self).__init__()

        self.embeddings = embeddings

        # Decoder State
        self.state = {}

        # previously, there was a GlobalAttention module here for copy
        # attention. But it was never actually used -- the "copy" attention
        # just reuses the context attention.
        self._copy = copy_attn
        if layer_norm == "standard":
            self.layer_norm = nn.LayerNorm(d_model, eps=norm_eps)
        elif layer_norm == "rms":
            self.layer_norm = RMSNorm(d_model, eps=norm_eps)
        else:
            raise ValueError(f"{layer_norm} layer norm type is not supported")

        self.alignment_layer = alignment_layer

    @classmethod
    def from_opt(cls, opt, embeddings):
        """Alternate constructor."""
        return cls(
            opt.dec_layers,
            opt.dec_hid_size,
            opt.heads,
            opt.transformer_ff,
            opt.copy_attn,
            opt.self_attn_type,
            opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
            opt.attention_dropout[0]
            if type(opt.attention_dropout) is list
            else opt.attention_dropout,
            embeddings,
            opt.max_relative_positions,
            opt.relative_positions_buckets,
            opt.aan_useffn,
            opt.full_context_alignment,
            opt.alignment_layer,
            alignment_heads=opt.alignment_heads,
            pos_ffn_activation_fn=opt.pos_ffn_activation_fn,
            add_qkvbias=opt.add_qkvbias,
            num_kv=opt.num_kv,
            add_ffnbias=opt.add_ffnbias,
            parallel_residual=opt.parallel_residual,
            shared_layer_norm=opt.shared_layer_norm,
            layer_norm=opt.layer_norm,
            norm_eps=opt.norm_eps,
            use_ckpting=opt.use_ckpting,
            parallel_gpu=opt.world_size
            if opt.parallel_mode == "tensor_parallel"
            else 1,
        )

    def init_state(self, src, enc_out, enc_final_hs):
        """Initialize decoder state."""
        self.state["src"] = src

    def map_state(self, fn):
        if self.state["src"] is not None:
            self.state["src"] = fn(self.state["src"], 0)
        for layer in self.transformer_layers:
            if hasattr(layer, "context_attn"):
                if layer.context_attn.layer_cache[1]["keys"].numel() != 0:
                    x = fn(layer.context_attn.layer_cache[1]["keys"], 0)
                    y = fn(layer.context_attn.layer_cache[1]["values"], 0)
                    layer.context_attn.layer_cache = True, {"keys": x, "values": y}
            if isinstance(layer.self_attn, AverageAttention):
                if layer.self_attn.layer_cache[1]["prev_g"].numel() != 0:
                    x = fn(layer.self_attn.layer_cache[1]["prev_g"], 0)
                    layer.self_attn.layer_cache = True, {"prev_g": x}
            else:
                if layer.self_attn.layer_cache[1]["keys"].numel() != 0:
                    x = fn(layer.self_attn.layer_cache[1]["keys"], 0)
                    y = fn(layer.self_attn.layer_cache[1]["values"], 0)
                    layer.self_attn.layer_cache = True, {"keys": x, "values": y}

    def detach_state(self):
        raise NotImplementedError

    def forward(self, *args, **kwargs):
        raise NotImplementedError

    def update_dropout(self, dropout, attention_dropout):
        self.embeddings.update_dropout(dropout)
        for layer in self.transformer_layers:
            layer.update_dropout(dropout, attention_dropout)


class TransformerDecoder(TransformerDecoderBase):
    """The Transformer decoder from "Attention is All You Need".
    :cite:`DBLP:journals/corr/VaswaniSPUJGKP17`

    Args:
        num_layers (int): number of decoder layers.
        d_model (int): size of the model
        heads (int): number of heads
        d_ff (int): size of the inner FF layer
        copy_attn (bool): if using a separate copy attention
        self_attn_type (str): type of self-attention scaled-dot, average
        dropout (float): dropout in residual, self-attn(dot) and feed-forward
        attention_dropout (float): dropout in context_attn (and self-attn(avg))
        embeddings (onmt.modules.Embeddings):
            embeddings to use, should have positional encodings
        max_relative_positions (int):
            Max distance between inputs in relative positions representations
        relative_positions_buckets (int):
            Number of buckets when using relative position bias
        aan_useffn (bool): Turn on the FFN layer in the AAN decoder
        full_context_alignment (bool):
            whether enable an extra full context decoder forward for alignment
        alignment_layer (int): N° Layer to supervise with for alignment guiding
        alignment_heads (int):
            N. of cross attention heads to use for alignment guiding
        add_qkvbias (bool): whether to add bias to the Key/Value nn.Linear
        layer_norm (string): type of layer normalization standard/rms
    """

    def __init__(
        self,
        num_layers,
        d_model,
        heads,
        d_ff,
        copy_attn,
        self_attn_type,
        dropout,
        attention_dropout,
        embeddings,
        max_relative_positions,
        relative_positions_buckets,
        aan_useffn,
        full_context_alignment,
        alignment_layer,
        alignment_heads,
        pos_ffn_activation_fn=ActivationFunction.relu,
        add_qkvbias=False,
        num_kv=0,
        add_ffnbias=True,
        parallel_residual=False,
        shared_layer_norm=False,
        layer_norm="standard",
        norm_eps=1e-6,
        use_ckpting=[],
        parallel_gpu=1,
    ):
        super(TransformerDecoder, self).__init__(
            d_model, copy_attn, embeddings, alignment_layer, layer_norm, norm_eps
        )

        self.transformer_layers = nn.ModuleList(
            [
                TransformerDecoderLayer(
                    d_model,
                    heads,
                    d_ff,
                    dropout,
                    attention_dropout,
                    self_attn_type=self_attn_type,
                    max_relative_positions=max_relative_positions,
                    relative_positions_buckets=relative_positions_buckets,
                    aan_useffn=aan_useffn,
                    full_context_alignment=full_context_alignment,
                    alignment_heads=alignment_heads,
                    pos_ffn_activation_fn=pos_ffn_activation_fn,
                    add_qkvbias=add_qkvbias,
                    num_kv=num_kv,
                    add_ffnbias=add_ffnbias,
                    parallel_residual=parallel_residual,
                    shared_layer_norm=shared_layer_norm,
                    layer_norm=layer_norm,
                    norm_eps=norm_eps,
                    use_ckpting=use_ckpting,
                    parallel_gpu=parallel_gpu,
                )
                for i in range(num_layers)
            ]
        )

    def detach_state(self):
        self.state["src"] = self.state["src"].detach()

    def forward(self, tgt, enc_out=None, step=None, **kwargs):
        """
        Decode, possibly stepwise.
        when training step is always None, when decoding, step increases
        tgt (Tensor): batch x tlen x feats
        enc_out (Tensor): encoder output (batch x slen x model_dim)
        """
        if enc_out is None:
            enc_out = self.embeddings(tgt)
        if step == 0:
            self._init_cache(enc_out)
        elif step is None:
            for layer in self.transformer_layers:
                if isinstance(layer.self_attn, AverageAttention):
                    layer.self_attn.layer_cache = False, {"prev_g": torch.tensor([])}
                else:
                    layer.self_attn.layer_cache = (
                        False,
                        {"keys": torch.tensor([]), "values": torch.tensor([])},
                    )
                layer.context_attn.layer_cache = (
                    False,
                    {"keys": torch.tensor([]), "values": torch.tensor([])},
                )

        emb = self.embeddings(tgt, step=step)
        dec_out = emb
        assert emb.dim() == 3  # len x batch x embedding_dim

        pad_idx = self.embeddings.word_padding_idx
        src_lens = kwargs["src_len"]
        src_max_len = self.state["src"].shape[1]
        src_pad_mask = ~sequence_mask(src_lens, src_max_len)  # [B x slen]
        src_pad_mask = src_pad_mask.unsqueeze(1)  # [B x 1 x slen]
        tgt_pad_mask = tgt[:, :, 0].eq(pad_idx).unsqueeze(1)  # [B, 1, T_tgt]

        with_align = kwargs.pop("with_align", False)
        return_attn = with_align or self._copy
        attn_aligns = []

        for layer in self.transformer_layers:
            dec_out, attn, attn_align = layer(
                dec_out,
                enc_out,
                src_pad_mask,
                tgt_pad_mask,
                step=step,
                with_align=with_align,
                return_attn=return_attn,
            )
            if attn_align is not None:
                attn_aligns.append(attn_align)

        dec_out = self.layer_norm(dec_out)

        attns = {"std": attn}
        if self._copy:
            attns["copy"] = attn
        if with_align:
            attns["align"] = attn_aligns[self.alignment_layer]  # `(B, Q, K)`
            # attns["align"] = torch.stack(attn_aligns, 0).mean(0)  # All avg

        # TODO change the way attns is returned dict => list or tuple (onnx)
        return dec_out, attns

    def _init_cache(self, enc_out):
        batch_size = enc_out.size(0)
        depth = enc_out.size(-1)

        for layer in self.transformer_layers:
            # first value set to True triggered by the beginning of decoding
            # layer_cache becomes active in the MultiHeadedAttention fwd
            layer.context_attn.layer_cache = (
                True,
                {
                    "keys": torch.tensor([], device=enc_out.device),
                    "values": torch.tensor([], device=enc_out.device),
                },
            )
            if isinstance(layer.self_attn, AverageAttention):
                layer.self_attn.layer_cache = True, {
                    "prev_g": torch.zeros(
                        (batch_size, 1, depth), device=enc_out.device
                    ).to(enc_out.dtype)
                }
            else:
                layer.self_attn.layer_cache = (
                    True,
                    {
                        "keys": torch.tensor([], device=enc_out.device),
                        "values": torch.tensor([], device=enc_out.device),
                    },
                )


class TransformerLMDecoderLayer(TransformerDecoderLayerBase):
    """Transformer Decoder only layer block in GPT style.
    Args:
         See TransformerDecoderLayerBase
    """

    def _forward(
        self, layer_in, tgt_pad_mask, step=None, future=False, return_attn=False
    ):
        """A naive forward pass for transformer decoder.

        # T: could be 1 in the case of stepwise decoding or tgt_len

        Args:
            layer_in (FloatTensor): ``(batch_size, T, model_dim)``
            tgt_pad_mask (bool): ``(batch_size, 1, T)``
            layer_cache (dict or None): cached layer info when stepwise decode
            step (int or None): stepwise decoding counter
            future (bool): If set True, do not apply future_mask.
            return_attn (bool): If set True return attn

        Returns:
            (FloatTensor, FloatTensor):

            * layer_out ``(batch_size, T, model_dim)``
            * attns ``(batch_size, head, T, T)``

        """
        dec_mask = None

        if layer_in.size(1) > 1:
            # masking is necessary when sequence length is greater than one
            dec_mask = self._compute_dec_mask(tgt_pad_mask, future)
            dec_mask = dec_mask.unsqueeze(1)
            dec_mask = dec_mask.expand(-1, -1, dec_mask.size(3), -1)
            # mask now are (batch x 1 x tlen x tlen)
            # 1 = heads to be expanded in MHA

        norm_layer_in = self.layer_norm_1(layer_in)

        attn_output, attns = self._forward_self_attn(
            norm_layer_in, dec_mask, step, return_attn=return_attn
        )

        if self.parallel_residual:
            # feed_forward applies residual, so we remove and apply residual with un-normed
            if not self.shared_layer_norm:
                norm_res_layer_in = self.layer_norm_res(layer_in)
                ff_in = norm_res_layer_in
            else:
                ff_in = norm_layer_in
            layer_out = (
                self.feed_forward(ff_in) - ff_in + layer_in + self.dropout(attn_output)
            )
        else:
            layer_out = self.dropout(attn_output) + layer_in
            layer_out = self.feed_forward(layer_out)

        return layer_out, attns


class TransformerLMDecoder(TransformerDecoderBase):
    """The Transformer decoder from GPT-2
    Args:
         num_layers (int): number of decoder layers.
         d_model (int): size of the model
         heads (int): number of heads
         d_ff (int): size of the inner FF layer
         copy_attn (bool): if using a separate copy attention
         self_attn_type (str): type of self-attention scaled-dot, average
         dropout (float): dropout in residual, self-attn(dot) and feed-forward
         attention_dropout (float): dropout in context_attn (and self-attn(avg))
         embeddings (onmt.modules.Embeddings):
             embeddings to use, should have positional encodings
         max_relative_positions (int):
             Max distance between inputs in relative positions representations
         relative_positions_buckets (int):
             Number of buckets when using Relative positions bias
         aan_useffn (bool): Turn on the FFN layer in the AAN decoder
         add_qkvbias (bool): whether to add bias to the Key/Value nn.Linear
    """

    def __init__(
        self,
        num_layers,
        d_model,
        heads,
        d_ff,
        copy_attn,
        self_attn_type,
        dropout,
        attention_dropout,
        embeddings,
        max_relative_positions,
        relative_positions_buckets,
        aan_useffn,
        full_context_alignment=None,
        alignment_layer=None,
        alignment_heads=None,
        pos_ffn_activation_fn=ActivationFunction.relu,
        add_qkvbias=False,
        num_kv=0,
        add_ffnbias=True,
        parallel_residual=False,
        shared_layer_norm=False,
        layer_norm="standard",
        norm_eps=1e-6,
        use_ckpting=[],
        parallel_gpu=1,
    ):
        super(TransformerLMDecoder, self).__init__(
            d_model, copy_attn, embeddings, alignment_layer, layer_norm, norm_eps
        )
        self.transformer_layers = nn.ModuleList(
            [
                TransformerLMDecoderLayer(
                    d_model,
                    heads,
                    d_ff,
                    dropout,
                    attention_dropout,
                    self_attn_type=self_attn_type,
                    max_relative_positions=max_relative_positions,
                    relative_positions_buckets=relative_positions_buckets,
                    aan_useffn=aan_useffn,
                    full_context_alignment=None,
                    alignment_heads=None,
                    pos_ffn_activation_fn=pos_ffn_activation_fn,
                    add_qkvbias=add_qkvbias,
                    num_kv=num_kv,
                    add_ffnbias=add_ffnbias,
                    parallel_residual=parallel_residual,
                    shared_layer_norm=shared_layer_norm,
                    layer_norm=layer_norm,
                    norm_eps=norm_eps,
                    use_ckpting=use_ckpting,
                    parallel_gpu=parallel_gpu,
                )
                for i in range(num_layers)
            ]
        )

    def init_state(self, src=None, enc_out=None, enc_final_hs=None):
        super(TransformerLMDecoder, self).init_state(None, None, None)

    def detach_state(self):
        pass

    def forward(self, tgt, enc_out=None, step=None, **kwargs):
        """Decode, possibly stepwise."""
        if step == 0:
            self._init_cache(tgt)
        elif step is None:
            for layer in self.transformer_layers:
                layer.self_attn.layer_cache = (
                    False,
                    {"keys": torch.tensor([]), "values": torch.tensor([])},
                )

        dec_out = self.embeddings(tgt, step=step)

        assert dec_out.dim() == 3  # batch x len x embedding_dim

        pad_idx = self.embeddings.word_padding_idx
        tgt_pad_mask = tgt[:, :, 0].eq(pad_idx).unsqueeze(1)  # [B, 1, T_tgt]

        with_align = kwargs.pop("with_align", False)
        return_attn = with_align or self._copy
        assert not with_align, "TransformerLMDecoder does not support align"

        for layer in self.transformer_layers:
            dec_out, attn, _ = layer(
                dec_out,
                tgt_pad_mask,
                step=step,
                with_align=with_align,
                return_attn=return_attn,
            )

        dec_out = self.layer_norm(dec_out)

        attns = {"std": attn}
        if self._copy:
            attns["copy"] = attn

        # TODO change the way attns is returned dict => list or tuple (onnx)
        return dec_out, attns

    def _init_cache(self, tgt=None):
        for layer in self.transformer_layers:
            if isinstance(layer.self_attn, AverageAttention):
                raise NotImplementedError
            else:
                layer.self_attn.layer_cache = (
                    True,
                    {
                        "keys": torch.tensor([], device=tgt.device),
                        "values": torch.tensor([], device=tgt.device),
                    },
                )