File size: 10,498 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
#!/usr/bin/env python
"""Get vocabulary coutings from transformed corpora samples."""
import os
import copy
import multiprocessing as mp
import pyonmttok
from functools import partial
from onmt.utils.logging import init_logger, logger
from onmt.utils.misc import set_random_seed, check_path
from onmt.utils.parse import ArgumentParser
from onmt.opts import dynamic_prepare_opts
from onmt.inputters.text_corpus import build_corpora_iters, get_corpora
from onmt.inputters.text_utils import process, append_features_to_text
from onmt.transforms import make_transforms, get_transforms_cls
from onmt.constants import CorpusName, CorpusTask
from collections import Counter
MAXBUCKETSIZE = 256000
def write_files_from_queues(sample_path, queues):
"""
Standalone process that reads data from
queues in order and write to sample files.
"""
os.makedirs(sample_path, exist_ok=True)
for c_name in queues.keys():
dest_base = os.path.join(sample_path, "{}.{}".format(c_name, CorpusName.SAMPLE))
with open(dest_base + ".src", "w", encoding="utf-8") as f_src, open(
dest_base + ".tgt", "w", encoding="utf-8"
) as f_tgt:
while True:
_next = False
for q in queues[c_name]:
item = q.get()
if item == "blank":
continue
if item == "break":
_next = True
break
_, src_line, tgt_line = item
f_src.write(src_line + "\n")
f_tgt.write(tgt_line + "\n")
if _next:
break
def build_sub_vocab(corpora, transforms, opts, n_sample, stride, offset):
"""Build vocab on (strided) subpart of the data."""
sub_counter_src = Counter()
sub_counter_tgt = Counter()
sub_counter_src_feats = [Counter() for _ in range(opts.n_src_feats)]
datasets_iterables = build_corpora_iters(
corpora,
transforms,
opts.data,
skip_empty_level=opts.skip_empty_level,
stride=stride,
offset=offset,
)
for c_name, c_iter in datasets_iterables.items():
for i, item in enumerate(c_iter):
maybe_example = process(CorpusTask.TRAIN, [item])
if maybe_example is not None:
maybe_example = maybe_example[0]
else:
if opts.dump_samples:
build_sub_vocab.queues[c_name][offset].put("blank")
continue
src_line, tgt_line = (
maybe_example["src"]["src"],
maybe_example["tgt"]["tgt"],
)
sub_counter_src.update(src_line.split(" "))
sub_counter_tgt.update(tgt_line.split(" "))
if "feats" in maybe_example["src"]:
src_feats_lines = maybe_example["src"]["feats"]
for k in range(opts.n_src_feats):
sub_counter_src_feats[k].update(src_feats_lines[k].split(" "))
else:
src_feats_lines = []
if opts.dump_samples:
src_pretty_line = append_features_to_text(src_line, src_feats_lines)
build_sub_vocab.queues[c_name][offset].put(
(i, src_pretty_line, tgt_line)
)
if n_sample > 0 and ((i + 1) * stride + offset) >= n_sample:
if opts.dump_samples:
build_sub_vocab.queues[c_name][offset].put("break")
break
if opts.dump_samples:
build_sub_vocab.queues[c_name][offset].put("break")
return sub_counter_src, sub_counter_tgt, sub_counter_src_feats
def init_pool(queues):
"""Add the queues as attribute of the pooled function."""
build_sub_vocab.queues = queues
def build_vocab(opts, transforms, n_sample=3):
"""Build vocabulary from data."""
if n_sample == -1:
logger.info(f"n_sample={n_sample}: Build vocab on full datasets.")
elif n_sample > 0:
logger.info(f"Build vocab on {n_sample} transformed examples/corpus.")
else:
raise ValueError(f"n_sample should > 0 or == -1, get {n_sample}.")
if opts.dump_samples:
logger.info(
"The samples on which the vocab is built will be "
"dumped to disk. It may slow down the process."
)
corpora = get_corpora(opts, task=CorpusTask.TRAIN)
counter_src = Counter()
counter_tgt = Counter()
counter_src_feats = [Counter() for _ in range(opts.n_src_feats)]
queues = {
c_name: [
mp.Queue(opts.vocab_sample_queue_size) for i in range(opts.num_threads)
]
for c_name in corpora.keys()
}
sample_path = os.path.join(os.path.dirname(opts.save_data), CorpusName.SAMPLE)
if opts.dump_samples:
write_process = mp.Process(
target=write_files_from_queues, args=(sample_path, queues), daemon=True
)
write_process.start()
with mp.Pool(opts.num_threads, init_pool, [queues]) as p:
func = partial(
build_sub_vocab, corpora, transforms, opts, n_sample, opts.num_threads
)
for sub_counter_src, sub_counter_tgt, sub_counter_src_feats in p.imap(
func, range(0, opts.num_threads)
):
counter_src.update(sub_counter_src)
counter_tgt.update(sub_counter_tgt)
for i in range(opts.n_src_feats):
counter_src_feats[i].update(sub_counter_src_feats[i])
if opts.dump_samples:
write_process.join()
return counter_src, counter_tgt, counter_src_feats
def ingest_tokens(opts, transforms, n_sample, learner, stride, offset):
def _mp_ingest(data):
func = partial(process, CorpusName.TRAIN)
chunk = len(data) // opts.num_threads
with mp.Pool(opts.num_threads) as pool:
buckets = pool.map(
func,
[data[i * chunk : (i + 1) * chunk] for i in range(0, opts.num_threads)],
)
for bucket in buckets:
for ex in bucket:
if ex is not None:
src_line, tgt_line = (ex["src"]["src"], ex["tgt"]["tgt"])
learner.ingest(src_line)
learner.ingest(tgt_line)
corpora = get_corpora(opts, task=CorpusTask.TRAIN)
datasets_iterables = build_corpora_iters(
corpora,
transforms,
opts.data,
skip_empty_level=opts.skip_empty_level,
stride=stride,
offset=offset,
)
to_ingest = []
for c_name, c_iter in datasets_iterables.items():
for i, item in enumerate(c_iter):
if n_sample >= 0 and i >= n_sample:
break
if len(to_ingest) >= MAXBUCKETSIZE:
_mp_ingest(to_ingest)
to_ingest = []
to_ingest.append(item)
_mp_ingest(to_ingest)
def make_learner(tokenization_type, symbols):
if tokenization_type == "bpe":
# BPE training
learner = pyonmttok.BPELearner(tokenizer=None, symbols=symbols)
elif tokenization_type == "sentencepiece":
# SentencePiece training
learner = pyonmttok.SentencePieceLearner(
vocab_size=symbols, character_coverage=0.98
)
return learner
def build_vocab_main(opts):
"""Apply transforms to samples of specified data and build vocab from it.
Transforms that need vocab will be disabled in this.
Built vocab is saved in plain text format as following and can be pass as
`-src_vocab` (and `-tgt_vocab`) when training:
```
<tok_0>\t<count_0>
<tok_1>\t<count_1>
```
"""
ArgumentParser.validate_prepare_opts(opts, build_vocab_only=True)
assert (
opts.n_sample == -1 or opts.n_sample > 1
), f"Illegal argument n_sample={opts.n_sample}."
logger = init_logger()
set_random_seed(opts.seed, False)
transforms_cls = get_transforms_cls(opts._all_transform)
if opts.learn_subwords:
logger.info(f"Ingesting {opts.src_subword_type} model from corpus")
learner = make_learner(opts.src_subword_type, opts.learn_subwords_size)
if opts.src_subword_model is not None:
tok_path = opts.src_subword_model
else:
data_dir = os.path.split(opts.save_data)[0]
if not os.path.exists(data_dir):
os.makedirs(data_dir)
tok_path = os.path.join(data_dir, f"{opts.src_subword_type}.model")
save_opts = copy.deepcopy(opts)
opts.src_subword_type = "none"
opts.tgt_subword_type = "none"
opts.src_onmttok_kwargs["joiner_annotate"] = False
opts.tgt_onmttok_kwargs["joiner_annotate"] = False
transforms = make_transforms(opts, transforms_cls, None)
ingest_tokens(opts, transforms, opts.n_sample, learner, 1, 0)
logger.info(f"Learning {tok_path} model, patience")
learner.learn(tok_path)
opts = save_opts
transforms = make_transforms(opts, transforms_cls, None)
logger.info(f"Counter vocab from {opts.n_sample} samples.")
src_counter, tgt_counter, src_feats_counter = build_vocab(
opts, transforms, n_sample=opts.n_sample
)
logger.info(f"Counters src: {len(src_counter)}")
logger.info(f"Counters tgt: {len(tgt_counter)}")
for i, feat_counter in enumerate(src_feats_counter):
logger.info(f"Counters src feat_{i}: {len(feat_counter)}")
def save_counter(counter, save_path):
check_path(save_path, exist_ok=opts.overwrite, log=logger.warning)
with open(save_path, "w", encoding="utf8") as fo:
for tok, count in counter.most_common():
fo.write(tok + "\t" + str(count) + "\n")
if opts.share_vocab:
src_counter += tgt_counter
tgt_counter = src_counter
logger.info(f"Counters after share:{len(src_counter)}")
save_counter(src_counter, opts.src_vocab)
else:
save_counter(src_counter, opts.src_vocab)
save_counter(tgt_counter, opts.tgt_vocab)
for i, c in enumerate(src_feats_counter):
save_counter(c, f"{opts.src_vocab}_feat{i}")
def _get_parser():
parser = ArgumentParser(description="build_vocab.py")
dynamic_prepare_opts(parser, build_vocab_only=True)
return parser
def main():
parser = _get_parser()
opts, unknown = parser.parse_known_args()
build_vocab_main(opts)
if __name__ == "__main__":
main()
|