AIClassifier / app.py
OliverH123's picture
Update app.py
d64a88c
from tensorflow.keras.models import load_model
from huggingface_hub import from_pretrained_keras
import streamlit as st
import numpy as np
import cv2
from PIL import Image
#st.markdown('<img src="Layonardo.png" alt="Image" style="width: 200px;">', unsafe_allow_html=True)
img = Image.open('Layonardo.png')
st.image(img)
st.header("Layonardo AI-CLASSIFIER")
st.write("Rudymentary implementation of an image classification, that can differentiate ai-generated from human-generated visual content.")
st.write("NOTE: Only trained on LEXICA Stable Diffusion images, images generated by other models may not be classified correctly.")
upload= st.file_uploader('Insert image for detection:', type=['png','jpg'])
c1, c2= st.columns(2)
if upload is not None:
im= Image.open(upload)
img= np.asarray(im)
img = cv2.resize(img, (224, 224))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img / 255.0
img = np.expand_dims(img, axis=0)
c1.header('Input Image')
c1.image(im)
c1.write(img.shape)
model = from_pretrained_keras("RaidedCluster/Sniffusion-PomerAInian")
prediction = model.predict(img)
hf=str(prediction[0][0]*100)+'% Human Factor'
c2.header('Output')
c2.subheader('Estimation:')
if prediction >=0.5:
est="Estimated to be Human Art."
else:
est="Estimated to be AI Art."
c2.write(est)
c2.write(hf)