Spaces:
Sleeping
Sleeping
from tensorflow.keras.models import load_model | |
from huggingface_hub import from_pretrained_keras | |
import streamlit as st | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
#st.markdown('<img src="Layonardo.png" alt="Image" style="width: 200px;">', unsafe_allow_html=True) | |
img = Image.open('Layonardo.png') | |
st.image(img) | |
st.header("Layonardo AI-CLASSIFIER") | |
st.write("Rudymentary implementation of an image classification, that can differentiate ai-generated from human-generated visual content.") | |
st.write("NOTE: Only trained on LEXICA Stable Diffusion images, images generated by other models may not be classified correctly.") | |
upload= st.file_uploader('Insert image for detection:', type=['png','jpg']) | |
c1, c2= st.columns(2) | |
if upload is not None: | |
im= Image.open(upload) | |
img= np.asarray(im) | |
img = cv2.resize(img, (224, 224)) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = img / 255.0 | |
img = np.expand_dims(img, axis=0) | |
c1.header('Input Image') | |
c1.image(im) | |
c1.write(img.shape) | |
model = from_pretrained_keras("RaidedCluster/Sniffusion-PomerAInian") | |
prediction = model.predict(img) | |
hf=str(prediction[0][0]*100)+'% Human Factor' | |
c2.header('Output') | |
c2.subheader('Estimation:') | |
if prediction >=0.5: | |
est="Estimated to be Human Art." | |
else: | |
est="Estimated to be AI Art." | |
c2.write(est) | |
c2.write(hf) |