Spaces:
Running
Running
ORI-Muchim
commited on
Update models.py
Browse files
models.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import math
|
2 |
import torch
|
3 |
from torch import nn
|
@@ -8,10 +9,16 @@ import modules
|
|
8 |
import attentions
|
9 |
import monotonic_align
|
10 |
|
11 |
-
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
12 |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
from commons import init_weights, get_padding
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
class StochasticDurationPredictor(nn.Module):
|
17 |
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
@@ -131,6 +138,148 @@ class DurationPredictor(nn.Module):
|
|
131 |
return x * x_mask
|
132 |
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
class TextEncoder(nn.Module):
|
135 |
def __init__(self,
|
136 |
n_vocab,
|
@@ -140,7 +289,8 @@ class TextEncoder(nn.Module):
|
|
140 |
n_heads,
|
141 |
n_layers,
|
142 |
kernel_size,
|
143 |
-
p_dropout
|
|
|
144 |
super().__init__()
|
145 |
self.n_vocab = n_vocab
|
146 |
self.out_channels = out_channels
|
@@ -150,10 +300,9 @@ class TextEncoder(nn.Module):
|
|
150 |
self.n_layers = n_layers
|
151 |
self.kernel_size = kernel_size
|
152 |
self.p_dropout = p_dropout
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
|
157 |
|
158 |
self.encoder = attentions.Encoder(
|
159 |
hidden_channels,
|
@@ -161,22 +310,455 @@ class TextEncoder(nn.Module):
|
|
161 |
n_heads,
|
162 |
n_layers,
|
163 |
kernel_size,
|
164 |
-
p_dropout
|
|
|
165 |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
166 |
|
167 |
-
def forward(self, x, x_lengths):
|
168 |
-
|
169 |
-
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
170 |
x = torch.transpose(x, 1, -1) # [b, h, t]
|
171 |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
172 |
|
173 |
-
x = self.encoder(x * x_mask, x_mask)
|
174 |
stats = self.proj(x) * x_mask
|
175 |
|
176 |
m, logs = torch.split(stats, self.out_channels, dim=1)
|
177 |
return x, m, logs, x_mask
|
178 |
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
class ResidualCouplingBlock(nn.Module):
|
181 |
def __init__(self,
|
182 |
channels,
|
@@ -198,8 +780,16 @@ class ResidualCouplingBlock(nn.Module):
|
|
198 |
self.flows = nn.ModuleList()
|
199 |
for i in range(n_flows):
|
200 |
self.flows.append(
|
201 |
-
modules.ResidualCouplingLayer(
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
self.flows.append(modules.Flip())
|
204 |
|
205 |
def forward(self, x, x_mask, g=None, reverse=False):
|
@@ -211,6 +801,11 @@ class ResidualCouplingBlock(nn.Module):
|
|
211 |
x = flow(x, x_mask, g=g, reverse=reverse)
|
212 |
return x
|
213 |
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
class PosteriorEncoder(nn.Module):
|
216 |
def __init__(self,
|
@@ -300,6 +895,272 @@ class Generator(torch.nn.Module):
|
|
300 |
l.remove_weight_norm()
|
301 |
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
class DiscriminatorP(torch.nn.Module):
|
304 |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
305 |
super(DiscriminatorP, self).__init__()
|
@@ -412,9 +1273,16 @@ class SynthesizerTrn(nn.Module):
|
|
412 |
upsample_rates,
|
413 |
upsample_initial_channel,
|
414 |
upsample_kernel_sizes,
|
|
|
|
|
415 |
n_speakers=0,
|
416 |
gin_channels=0,
|
417 |
use_sdp=True,
|
|
|
|
|
|
|
|
|
|
|
418 |
**kwargs):
|
419 |
|
420 |
super().__init__()
|
@@ -436,9 +1304,25 @@ class SynthesizerTrn(nn.Module):
|
|
436 |
self.segment_size = segment_size
|
437 |
self.n_speakers = n_speakers
|
438 |
self.gin_channels = gin_channels
|
439 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
self.use_sdp = use_sdp
|
441 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
self.enc_p = TextEncoder(n_vocab,
|
443 |
inter_channels,
|
444 |
hidden_channels,
|
@@ -446,29 +1330,60 @@ class SynthesizerTrn(nn.Module):
|
|
446 |
n_heads,
|
447 |
n_layers,
|
448 |
kernel_size,
|
449 |
-
p_dropout
|
450 |
-
|
451 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
453 |
gin_channels=gin_channels)
|
454 |
-
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
|
456 |
if use_sdp:
|
457 |
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
458 |
else:
|
459 |
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
460 |
|
461 |
-
|
462 |
-
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
463 |
|
464 |
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
|
|
|
|
465 |
|
466 |
-
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
467 |
-
if self.n_speakers > 1:
|
468 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
469 |
-
else:
|
470 |
-
g = None
|
471 |
-
|
472 |
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
473 |
z_p = self.flow(z, y_mask, g=g)
|
474 |
|
@@ -482,6 +1397,10 @@ class SynthesizerTrn(nn.Module):
|
|
482 |
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
483 |
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
484 |
|
|
|
|
|
|
|
|
|
485 |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
486 |
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
487 |
|
@@ -489,6 +1408,8 @@ class SynthesizerTrn(nn.Module):
|
|
489 |
if self.use_sdp:
|
490 |
l_length = self.dp(x, x_mask, w, g=g)
|
491 |
l_length = l_length / torch.sum(x_mask)
|
|
|
|
|
492 |
else:
|
493 |
logw_ = torch.log(w + 1e-6) * x_mask
|
494 |
logw = self.dp(x, x_mask, g=g)
|
@@ -499,16 +1420,13 @@ class SynthesizerTrn(nn.Module):
|
|
499 |
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
500 |
|
501 |
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
502 |
-
o = self.dec(z_slice, g=g)
|
503 |
-
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
504 |
|
505 |
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
506 |
-
|
507 |
-
if self.n_speakers > 1:
|
508 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
509 |
-
else:
|
510 |
-
g = None
|
511 |
|
|
|
512 |
if self.use_sdp:
|
513 |
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
514 |
else:
|
@@ -526,15 +1444,21 @@ class SynthesizerTrn(nn.Module):
|
|
526 |
|
527 |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
528 |
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
529 |
-
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
530 |
-
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
533 |
-
assert self.n_speakers >
|
534 |
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
535 |
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
536 |
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
537 |
z_p = self.flow(z, y_mask, g=g_src)
|
538 |
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
539 |
-
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
540 |
-
return o_hat, y_mask, (z, z_p, z_hat)
|
|
|
|
1 |
+
import copy
|
2 |
import math
|
3 |
import torch
|
4 |
from torch import nn
|
|
|
9 |
import attentions
|
10 |
import monotonic_align
|
11 |
|
12 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
13 |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
from commons import init_weights, get_padding
|
15 |
|
16 |
+
from pqmf import PQMF
|
17 |
+
from stft import TorchSTFT, OnnxSTFT
|
18 |
+
|
19 |
+
AVAILABLE_FLOW_TYPES = ["pre_conv", "pre_conv2", "fft", "mono_layer_inter_residual", "mono_layer_post_residual"]
|
20 |
+
AVAILABLE_DURATION_DISCRIMINATOR_TYPES = {"dur_disc_1": "DurationDiscriminator", "dur_disc_2": "DurationDiscriminator2"}
|
21 |
+
|
22 |
|
23 |
class StochasticDurationPredictor(nn.Module):
|
24 |
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
|
|
138 |
return x * x_mask
|
139 |
|
140 |
|
141 |
+
class DurationDiscriminator(nn.Module): # vits2
|
142 |
+
# TODO : not using "spk conditioning" for now according to the paper.
|
143 |
+
# Can be a better discriminator if we use it.
|
144 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
145 |
+
super().__init__()
|
146 |
+
|
147 |
+
self.in_channels = in_channels
|
148 |
+
self.filter_channels = filter_channels
|
149 |
+
self.kernel_size = kernel_size
|
150 |
+
self.p_dropout = p_dropout
|
151 |
+
self.gin_channels = gin_channels
|
152 |
+
|
153 |
+
self.drop = nn.Dropout(p_dropout)
|
154 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
155 |
+
# self.norm_1 = modules.LayerNorm(filter_channels)
|
156 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
157 |
+
# self.norm_2 = modules.LayerNorm(filter_channels)
|
158 |
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
159 |
+
|
160 |
+
self.pre_out_conv_1 = nn.Conv1d(2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
161 |
+
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
162 |
+
self.pre_out_conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
163 |
+
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
164 |
+
|
165 |
+
# if gin_channels != 0:
|
166 |
+
# self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
167 |
+
|
168 |
+
self.output_layer = nn.Sequential(
|
169 |
+
nn.Linear(filter_channels, 1),
|
170 |
+
nn.Sigmoid()
|
171 |
+
)
|
172 |
+
|
173 |
+
def forward_probability(self, x, x_mask, dur, g=None):
|
174 |
+
dur = self.dur_proj(dur)
|
175 |
+
x = torch.cat([x, dur], dim=1)
|
176 |
+
x = self.pre_out_conv_1(x * x_mask)
|
177 |
+
# x = torch.relu(x)
|
178 |
+
# x = self.pre_out_norm_1(x)
|
179 |
+
# x = self.drop(x)
|
180 |
+
x = self.pre_out_conv_2(x * x_mask)
|
181 |
+
# x = torch.relu(x)
|
182 |
+
# x = self.pre_out_norm_2(x)
|
183 |
+
# x = self.drop(x)
|
184 |
+
x = x * x_mask
|
185 |
+
x = x.transpose(1, 2)
|
186 |
+
output_prob = self.output_layer(x)
|
187 |
+
return output_prob
|
188 |
+
|
189 |
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
190 |
+
x = torch.detach(x)
|
191 |
+
# if g is not None:
|
192 |
+
# g = torch.detach(g)
|
193 |
+
# x = x + self.cond(g)
|
194 |
+
x = self.conv_1(x * x_mask)
|
195 |
+
# x = torch.relu(x)
|
196 |
+
# x = self.norm_1(x)
|
197 |
+
# x = self.drop(x)
|
198 |
+
x = self.conv_2(x * x_mask)
|
199 |
+
# x = torch.relu(x)
|
200 |
+
# x = self.norm_2(x)
|
201 |
+
# x = self.drop(x)
|
202 |
+
|
203 |
+
output_probs = []
|
204 |
+
for dur in [dur_r, dur_hat]:
|
205 |
+
output_prob = self.forward_probability(x, x_mask, dur, g)
|
206 |
+
output_probs.append(output_prob)
|
207 |
+
|
208 |
+
return output_probs
|
209 |
+
|
210 |
+
|
211 |
+
class DurationDiscriminator2(nn.Module): # vits2 - DurationDiscriminator2
|
212 |
+
# TODO : not using "spk conditioning" for now according to the paper.
|
213 |
+
# Can be a better discriminator if we use it.
|
214 |
+
def __init__(
|
215 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
216 |
+
):
|
217 |
+
super().__init__()
|
218 |
+
|
219 |
+
self.in_channels = in_channels
|
220 |
+
self.filter_channels = filter_channels
|
221 |
+
self.kernel_size = kernel_size
|
222 |
+
self.p_dropout = p_dropout
|
223 |
+
self.gin_channels = gin_channels
|
224 |
+
|
225 |
+
self.conv_1 = nn.Conv1d(
|
226 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
227 |
+
)
|
228 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
229 |
+
self.conv_2 = nn.Conv1d(
|
230 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
231 |
+
)
|
232 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
233 |
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
234 |
+
|
235 |
+
self.pre_out_conv_1 = nn.Conv1d(
|
236 |
+
2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
237 |
+
)
|
238 |
+
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
239 |
+
self.pre_out_conv_2 = nn.Conv1d(
|
240 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
241 |
+
)
|
242 |
+
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
243 |
+
|
244 |
+
# if gin_channels != 0:
|
245 |
+
# self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
246 |
+
|
247 |
+
self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
|
248 |
+
|
249 |
+
def forward_probability(self, x, x_mask, dur, g=None):
|
250 |
+
dur = self.dur_proj(dur)
|
251 |
+
x = torch.cat([x, dur], dim=1)
|
252 |
+
x = self.pre_out_conv_1(x * x_mask)
|
253 |
+
x = torch.relu(x)
|
254 |
+
x = self.pre_out_norm_1(x)
|
255 |
+
x = self.pre_out_conv_2(x * x_mask)
|
256 |
+
x = torch.relu(x)
|
257 |
+
x = self.pre_out_norm_2(x)
|
258 |
+
x = x * x_mask
|
259 |
+
x = x.transpose(1, 2)
|
260 |
+
output_prob = self.output_layer(x)
|
261 |
+
return output_prob
|
262 |
+
|
263 |
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
264 |
+
x = torch.detach(x)
|
265 |
+
# if g is not None:
|
266 |
+
# g = torch.detach(g)
|
267 |
+
# x = x + self.cond(g)
|
268 |
+
x = self.conv_1(x * x_mask)
|
269 |
+
x = torch.relu(x)
|
270 |
+
x = self.norm_1(x)
|
271 |
+
x = self.conv_2(x * x_mask)
|
272 |
+
x = torch.relu(x)
|
273 |
+
x = self.norm_2(x)
|
274 |
+
|
275 |
+
output_probs = []
|
276 |
+
for dur in [dur_r, dur_hat]:
|
277 |
+
output_prob = self.forward_probability(x, x_mask, dur, g)
|
278 |
+
output_probs.append([output_prob])
|
279 |
+
|
280 |
+
return output_probs
|
281 |
+
|
282 |
+
|
283 |
class TextEncoder(nn.Module):
|
284 |
def __init__(self,
|
285 |
n_vocab,
|
|
|
289 |
n_heads,
|
290 |
n_layers,
|
291 |
kernel_size,
|
292 |
+
p_dropout,
|
293 |
+
gin_channels=0):
|
294 |
super().__init__()
|
295 |
self.n_vocab = n_vocab
|
296 |
self.out_channels = out_channels
|
|
|
300 |
self.n_layers = n_layers
|
301 |
self.kernel_size = kernel_size
|
302 |
self.p_dropout = p_dropout
|
303 |
+
self.gin_channels = gin_channels
|
304 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
305 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
|
|
|
306 |
|
307 |
self.encoder = attentions.Encoder(
|
308 |
hidden_channels,
|
|
|
310 |
n_heads,
|
311 |
n_layers,
|
312 |
kernel_size,
|
313 |
+
p_dropout,
|
314 |
+
gin_channels=self.gin_channels)
|
315 |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
316 |
|
317 |
+
def forward(self, x, x_lengths, g=None):
|
318 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
|
|
319 |
x = torch.transpose(x, 1, -1) # [b, h, t]
|
320 |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
321 |
|
322 |
+
x = self.encoder(x * x_mask, x_mask, g=g)
|
323 |
stats = self.proj(x) * x_mask
|
324 |
|
325 |
m, logs = torch.split(stats, self.out_channels, dim=1)
|
326 |
return x, m, logs, x_mask
|
327 |
|
328 |
|
329 |
+
class ResidualCouplingTransformersLayer2(nn.Module): # vits2
|
330 |
+
def __init__(
|
331 |
+
self,
|
332 |
+
channels,
|
333 |
+
hidden_channels,
|
334 |
+
kernel_size,
|
335 |
+
dilation_rate,
|
336 |
+
n_layers,
|
337 |
+
p_dropout=0,
|
338 |
+
gin_channels=0,
|
339 |
+
mean_only=False,
|
340 |
+
):
|
341 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
342 |
+
super().__init__()
|
343 |
+
self.channels = channels
|
344 |
+
self.hidden_channels = hidden_channels
|
345 |
+
self.kernel_size = kernel_size
|
346 |
+
self.dilation_rate = dilation_rate
|
347 |
+
self.n_layers = n_layers
|
348 |
+
self.half_channels = channels // 2
|
349 |
+
self.mean_only = mean_only
|
350 |
+
|
351 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
352 |
+
self.pre_transformer = attentions.Encoder(
|
353 |
+
hidden_channels,
|
354 |
+
hidden_channels,
|
355 |
+
n_heads=2,
|
356 |
+
n_layers=1,
|
357 |
+
kernel_size=kernel_size,
|
358 |
+
p_dropout=p_dropout,
|
359 |
+
# window_size=None,
|
360 |
+
)
|
361 |
+
self.enc = modules.WN(
|
362 |
+
hidden_channels,
|
363 |
+
kernel_size,
|
364 |
+
dilation_rate,
|
365 |
+
n_layers,
|
366 |
+
p_dropout=p_dropout,
|
367 |
+
gin_channels=gin_channels,
|
368 |
+
)
|
369 |
+
|
370 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
371 |
+
self.post.weight.data.zero_()
|
372 |
+
self.post.bias.data.zero_()
|
373 |
+
|
374 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
375 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
376 |
+
h = self.pre(x0) * x_mask
|
377 |
+
h = h + self.pre_transformer(h * x_mask, x_mask) # vits2 residual connection
|
378 |
+
h = self.enc(h, x_mask, g=g)
|
379 |
+
stats = self.post(h) * x_mask
|
380 |
+
if not self.mean_only:
|
381 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
382 |
+
else:
|
383 |
+
m = stats
|
384 |
+
logs = torch.zeros_like(m)
|
385 |
+
if not reverse:
|
386 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
387 |
+
x = torch.cat([x0, x1], 1)
|
388 |
+
logdet = torch.sum(logs, [1, 2])
|
389 |
+
return x, logdet
|
390 |
+
else:
|
391 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
392 |
+
x = torch.cat([x0, x1], 1)
|
393 |
+
return x
|
394 |
+
|
395 |
+
|
396 |
+
class ResidualCouplingTransformersLayer(nn.Module): # vits2
|
397 |
+
def __init__(
|
398 |
+
self,
|
399 |
+
channels,
|
400 |
+
hidden_channels,
|
401 |
+
kernel_size,
|
402 |
+
dilation_rate,
|
403 |
+
n_layers,
|
404 |
+
p_dropout=0,
|
405 |
+
gin_channels=0,
|
406 |
+
mean_only=False,
|
407 |
+
):
|
408 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
409 |
+
super().__init__()
|
410 |
+
self.channels = channels
|
411 |
+
self.hidden_channels = hidden_channels
|
412 |
+
self.kernel_size = kernel_size
|
413 |
+
self.dilation_rate = dilation_rate
|
414 |
+
self.n_layers = n_layers
|
415 |
+
self.half_channels = channels // 2
|
416 |
+
self.mean_only = mean_only
|
417 |
+
# vits2
|
418 |
+
self.pre_transformer = attentions.Encoder(
|
419 |
+
self.half_channels,
|
420 |
+
self.half_channels,
|
421 |
+
n_heads=2,
|
422 |
+
n_layers=2,
|
423 |
+
kernel_size=3,
|
424 |
+
p_dropout=0.1,
|
425 |
+
window_size=None
|
426 |
+
)
|
427 |
+
|
428 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
429 |
+
self.enc = modules.WN(
|
430 |
+
hidden_channels,
|
431 |
+
kernel_size,
|
432 |
+
dilation_rate,
|
433 |
+
n_layers,
|
434 |
+
p_dropout=p_dropout,
|
435 |
+
gin_channels=gin_channels,
|
436 |
+
)
|
437 |
+
# vits2
|
438 |
+
self.post_transformer = attentions.Encoder(
|
439 |
+
self.hidden_channels,
|
440 |
+
self.hidden_channels,
|
441 |
+
n_heads=2,
|
442 |
+
n_layers=2,
|
443 |
+
kernel_size=3,
|
444 |
+
p_dropout=0.1,
|
445 |
+
window_size=None
|
446 |
+
)
|
447 |
+
|
448 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
449 |
+
self.post.weight.data.zero_()
|
450 |
+
self.post.bias.data.zero_()
|
451 |
+
|
452 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
453 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
454 |
+
x0_ = self.pre_transformer(x0 * x_mask, x_mask) # vits2
|
455 |
+
x0_ = x0_ + x0 # vits2 residual connection
|
456 |
+
h = self.pre(x0_) * x_mask # changed from x0 to x0_ to retain x0 for the flow
|
457 |
+
h = self.enc(h, x_mask, g=g)
|
458 |
+
|
459 |
+
# vits2 - (experimental;uncomment the following 2 line to use)
|
460 |
+
# h_ = self.post_transformer(h, x_mask)
|
461 |
+
# h = h + h_ #vits2 residual connection
|
462 |
+
|
463 |
+
stats = self.post(h) * x_mask
|
464 |
+
if not self.mean_only:
|
465 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
466 |
+
else:
|
467 |
+
m = stats
|
468 |
+
logs = torch.zeros_like(m)
|
469 |
+
if not reverse:
|
470 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
471 |
+
x = torch.cat([x0, x1], 1)
|
472 |
+
logdet = torch.sum(logs, [1, 2])
|
473 |
+
return x, logdet
|
474 |
+
else:
|
475 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
476 |
+
x = torch.cat([x0, x1], 1)
|
477 |
+
return x
|
478 |
+
|
479 |
+
def remove_weight_norm(self): # !
|
480 |
+
self.enc.remove_weight_norm()
|
481 |
+
|
482 |
+
|
483 |
+
class FFTransformerCouplingLayer(nn.Module): # vits2
|
484 |
+
def __init__(self,
|
485 |
+
channels,
|
486 |
+
hidden_channels,
|
487 |
+
kernel_size,
|
488 |
+
n_layers,
|
489 |
+
n_heads,
|
490 |
+
p_dropout=0,
|
491 |
+
filter_channels=768,
|
492 |
+
mean_only=False,
|
493 |
+
gin_channels=0
|
494 |
+
):
|
495 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
496 |
+
super().__init__()
|
497 |
+
self.channels = channels
|
498 |
+
self.hidden_channels = hidden_channels
|
499 |
+
self.kernel_size = kernel_size
|
500 |
+
self.n_layers = n_layers
|
501 |
+
self.half_channels = channels // 2
|
502 |
+
self.mean_only = mean_only
|
503 |
+
|
504 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
505 |
+
self.enc = attentions.FFT(
|
506 |
+
hidden_channels,
|
507 |
+
filter_channels,
|
508 |
+
n_heads,
|
509 |
+
n_layers,
|
510 |
+
kernel_size,
|
511 |
+
p_dropout,
|
512 |
+
isflow=True,
|
513 |
+
gin_channels=gin_channels
|
514 |
+
)
|
515 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
516 |
+
self.post.weight.data.zero_()
|
517 |
+
self.post.bias.data.zero_()
|
518 |
+
|
519 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
520 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
521 |
+
h = self.pre(x0) * x_mask
|
522 |
+
h_ = self.enc(h, x_mask, g=g)
|
523 |
+
h = h_ + h
|
524 |
+
stats = self.post(h) * x_mask
|
525 |
+
if not self.mean_only:
|
526 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
527 |
+
else:
|
528 |
+
m = stats
|
529 |
+
logs = torch.zeros_like(m)
|
530 |
+
|
531 |
+
if not reverse:
|
532 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
533 |
+
x = torch.cat([x0, x1], 1)
|
534 |
+
logdet = torch.sum(logs, [1, 2])
|
535 |
+
return x, logdet
|
536 |
+
else:
|
537 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
538 |
+
x = torch.cat([x0, x1], 1)
|
539 |
+
return x
|
540 |
+
|
541 |
+
|
542 |
+
class MonoTransformerFlowLayer(nn.Module): # vits2
|
543 |
+
def __init__(
|
544 |
+
self,
|
545 |
+
channels,
|
546 |
+
hidden_channels,
|
547 |
+
mean_only=False,
|
548 |
+
residual_connection=False,
|
549 |
+
# according to VITS-2 paper fig 1B set residual_connection=True
|
550 |
+
):
|
551 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
552 |
+
super().__init__()
|
553 |
+
self.channels = channels
|
554 |
+
self.hidden_channels = hidden_channels
|
555 |
+
self.half_channels = channels // 2
|
556 |
+
self.mean_only = mean_only
|
557 |
+
self.residual_connection = residual_connection
|
558 |
+
# vits2
|
559 |
+
self.pre_transformer = attentions.Encoder(
|
560 |
+
self.half_channels,
|
561 |
+
self.half_channels,
|
562 |
+
n_heads=2,
|
563 |
+
n_layers=2,
|
564 |
+
kernel_size=3,
|
565 |
+
p_dropout=0.1,
|
566 |
+
window_size=None
|
567 |
+
)
|
568 |
+
|
569 |
+
self.post = nn.Conv1d(self.half_channels, self.half_channels * (2 - mean_only), 1)
|
570 |
+
self.post.weight.data.zero_()
|
571 |
+
self.post.bias.data.zero_()
|
572 |
+
|
573 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
574 |
+
if self.residual_connection:
|
575 |
+
if not reverse:
|
576 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
577 |
+
x0_ = x0 * x_mask
|
578 |
+
x0_ = self.pre_transformer(x0, x_mask) # vits2
|
579 |
+
stats = self.post(x0_) * x_mask
|
580 |
+
if not self.mean_only:
|
581 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
582 |
+
else:
|
583 |
+
m = stats
|
584 |
+
logs = torch.zeros_like(m)
|
585 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
586 |
+
x_ = torch.cat([x0, x1], 1)
|
587 |
+
x = x + x_
|
588 |
+
logdet = torch.sum(torch.log(torch.exp(logs) + 1), [1, 2])
|
589 |
+
logdet = logdet + torch.log(torch.tensor(2)) * (x0.shape[1] * x0.shape[2])
|
590 |
+
return x, logdet
|
591 |
+
|
592 |
+
else:
|
593 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
594 |
+
x0 = x0 / 2
|
595 |
+
x0_ = x0 * x_mask
|
596 |
+
x0_ = self.pre_transformer(x0, x_mask) # vits2
|
597 |
+
stats = self.post(x0_) * x_mask
|
598 |
+
if not self.mean_only:
|
599 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
600 |
+
else:
|
601 |
+
m = stats
|
602 |
+
logs = torch.zeros_like(m)
|
603 |
+
x1_ = ((x1 - m) / (1 + torch.exp(-logs))) * x_mask
|
604 |
+
x = torch.cat([x0, x1_], 1)
|
605 |
+
return x
|
606 |
+
else:
|
607 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
608 |
+
x0_ = self.pre_transformer(x0 * x_mask, x_mask) # vits2
|
609 |
+
h = x0_ + x0 # vits2
|
610 |
+
stats = self.post(h) * x_mask
|
611 |
+
if not self.mean_only:
|
612 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
613 |
+
else:
|
614 |
+
m = stats
|
615 |
+
logs = torch.zeros_like(m)
|
616 |
+
if not reverse:
|
617 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
618 |
+
x = torch.cat([x0, x1], 1)
|
619 |
+
logdet = torch.sum(logs, [1, 2])
|
620 |
+
return x, logdet
|
621 |
+
else:
|
622 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
623 |
+
x = torch.cat([x0, x1], 1)
|
624 |
+
return x
|
625 |
+
|
626 |
+
|
627 |
+
class ResidualCouplingTransformersBlock(nn.Module): # vits2
|
628 |
+
def __init__(self,
|
629 |
+
channels,
|
630 |
+
hidden_channels,
|
631 |
+
kernel_size,
|
632 |
+
dilation_rate,
|
633 |
+
n_layers,
|
634 |
+
n_flows=4,
|
635 |
+
gin_channels=0,
|
636 |
+
use_transformer_flows=False,
|
637 |
+
transformer_flow_type="pre_conv",
|
638 |
+
):
|
639 |
+
super().__init__()
|
640 |
+
self.channels = channels
|
641 |
+
self.hidden_channels = hidden_channels
|
642 |
+
self.kernel_size = kernel_size
|
643 |
+
self.dilation_rate = dilation_rate
|
644 |
+
self.n_layers = n_layers
|
645 |
+
self.n_flows = n_flows
|
646 |
+
self.gin_channels = gin_channels
|
647 |
+
|
648 |
+
self.flows = nn.ModuleList()
|
649 |
+
# TODO : clean up this mess
|
650 |
+
if use_transformer_flows:
|
651 |
+
if transformer_flow_type == "pre_conv":
|
652 |
+
for i in range(n_flows):
|
653 |
+
self.flows.append(
|
654 |
+
ResidualCouplingTransformersLayer(
|
655 |
+
channels,
|
656 |
+
hidden_channels,
|
657 |
+
kernel_size,
|
658 |
+
dilation_rate,
|
659 |
+
n_layers,
|
660 |
+
gin_channels=gin_channels,
|
661 |
+
mean_only=True
|
662 |
+
)
|
663 |
+
)
|
664 |
+
self.flows.append(modules.Flip())
|
665 |
+
elif transformer_flow_type == "pre_conv2":
|
666 |
+
for i in range(n_flows):
|
667 |
+
self.flows.append(
|
668 |
+
ResidualCouplingTransformersLayer2(
|
669 |
+
channels,
|
670 |
+
hidden_channels,
|
671 |
+
kernel_size,
|
672 |
+
dilation_rate,
|
673 |
+
n_layers,
|
674 |
+
gin_channels=gin_channels,
|
675 |
+
mean_only=True,
|
676 |
+
)
|
677 |
+
)
|
678 |
+
self.flows.append(modules.Flip())
|
679 |
+
elif transformer_flow_type == "fft":
|
680 |
+
for i in range(n_flows):
|
681 |
+
self.flows.append(
|
682 |
+
FFTransformerCouplingLayer(
|
683 |
+
channels,
|
684 |
+
hidden_channels,
|
685 |
+
kernel_size,
|
686 |
+
dilation_rate,
|
687 |
+
n_layers,
|
688 |
+
gin_channels=gin_channels,
|
689 |
+
mean_only=True
|
690 |
+
)
|
691 |
+
)
|
692 |
+
self.flows.append(modules.Flip())
|
693 |
+
elif transformer_flow_type == "mono_layer_inter_residual":
|
694 |
+
for i in range(n_flows):
|
695 |
+
self.flows.append(
|
696 |
+
modules.ResidualCouplingLayer(
|
697 |
+
channels,
|
698 |
+
hidden_channels,
|
699 |
+
kernel_size,
|
700 |
+
dilation_rate,
|
701 |
+
n_layers,
|
702 |
+
gin_channels=gin_channels,
|
703 |
+
mean_only=True
|
704 |
+
)
|
705 |
+
)
|
706 |
+
self.flows.append(modules.Flip())
|
707 |
+
self.flows.append(
|
708 |
+
MonoTransformerFlowLayer(
|
709 |
+
channels, hidden_channels, mean_only=True
|
710 |
+
)
|
711 |
+
)
|
712 |
+
elif transformer_flow_type == "mono_layer_post_residual":
|
713 |
+
for i in range(n_flows):
|
714 |
+
self.flows.append(
|
715 |
+
modules.ResidualCouplingLayer(
|
716 |
+
channels,
|
717 |
+
hidden_channels,
|
718 |
+
kernel_size,
|
719 |
+
dilation_rate,
|
720 |
+
n_layers,
|
721 |
+
gin_channels=gin_channels,
|
722 |
+
mean_only=True,
|
723 |
+
)
|
724 |
+
)
|
725 |
+
self.flows.append(modules.Flip())
|
726 |
+
self.flows.append(
|
727 |
+
MonoTransformerFlowLayer(
|
728 |
+
channels, hidden_channels, mean_only=True,
|
729 |
+
residual_connection=True
|
730 |
+
)
|
731 |
+
)
|
732 |
+
else:
|
733 |
+
for i in range(n_flows):
|
734 |
+
self.flows.append(
|
735 |
+
modules.ResidualCouplingLayer(
|
736 |
+
channels,
|
737 |
+
hidden_channels,
|
738 |
+
kernel_size,
|
739 |
+
dilation_rate,
|
740 |
+
n_layers,
|
741 |
+
gin_channels=gin_channels,
|
742 |
+
mean_only=True
|
743 |
+
)
|
744 |
+
)
|
745 |
+
self.flows.append(modules.Flip())
|
746 |
+
|
747 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
748 |
+
if not reverse:
|
749 |
+
for flow in self.flows:
|
750 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
751 |
+
else:
|
752 |
+
for flow in reversed(self.flows):
|
753 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
754 |
+
return x
|
755 |
+
|
756 |
+
def remove_weight_norm(self): # !
|
757 |
+
for i, l in enumerate(self.flows):
|
758 |
+
if i % 2 == 0:
|
759 |
+
l.remove_weight_norm()
|
760 |
+
|
761 |
+
|
762 |
class ResidualCouplingBlock(nn.Module):
|
763 |
def __init__(self,
|
764 |
channels,
|
|
|
780 |
self.flows = nn.ModuleList()
|
781 |
for i in range(n_flows):
|
782 |
self.flows.append(
|
783 |
+
modules.ResidualCouplingLayer(
|
784 |
+
channels,
|
785 |
+
hidden_channels,
|
786 |
+
kernel_size,
|
787 |
+
dilation_rate,
|
788 |
+
n_layers,
|
789 |
+
gin_channels=gin_channels,
|
790 |
+
mean_only=True
|
791 |
+
)
|
792 |
+
)
|
793 |
self.flows.append(modules.Flip())
|
794 |
|
795 |
def forward(self, x, x_mask, g=None, reverse=False):
|
|
|
801 |
x = flow(x, x_mask, g=g, reverse=reverse)
|
802 |
return x
|
803 |
|
804 |
+
def remove_weight_norm(self): # !
|
805 |
+
for i, l in enumerate(self.flows):
|
806 |
+
if i % 2 == 0:
|
807 |
+
l.remove_weight_norm()
|
808 |
+
|
809 |
|
810 |
class PosteriorEncoder(nn.Module):
|
811 |
def __init__(self,
|
|
|
895 |
l.remove_weight_norm()
|
896 |
|
897 |
|
898 |
+
class iSTFT_Generator(torch.nn.Module):
|
899 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
900 |
+
upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size,
|
901 |
+
gin_channels=0, is_onnx=False):
|
902 |
+
super(iSTFT_Generator, self).__init__()
|
903 |
+
# self.h = h
|
904 |
+
self.gen_istft_n_fft = gen_istft_n_fft
|
905 |
+
self.gen_istft_hop_size = gen_istft_hop_size
|
906 |
+
|
907 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
908 |
+
self.num_upsamples = len(upsample_rates)
|
909 |
+
self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
|
910 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
911 |
+
|
912 |
+
self.ups = nn.ModuleList()
|
913 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
914 |
+
self.ups.append(weight_norm(
|
915 |
+
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
916 |
+
k, u, padding=(k - u) // 2)))
|
917 |
+
|
918 |
+
self.resblocks = nn.ModuleList()
|
919 |
+
for i in range(len(self.ups)):
|
920 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
921 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
922 |
+
self.resblocks.append(resblock(ch, k, d))
|
923 |
+
|
924 |
+
self.post_n_fft = self.gen_istft_n_fft
|
925 |
+
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
|
926 |
+
self.ups.apply(init_weights)
|
927 |
+
self.conv_post.apply(init_weights)
|
928 |
+
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
929 |
+
'''
|
930 |
+
self.stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size,
|
931 |
+
win_length=self.gen_istft_n_fft)
|
932 |
+
'''
|
933 |
+
# - for onnx
|
934 |
+
if is_onnx == True:
|
935 |
+
self.stft = OnnxSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size,
|
936 |
+
win_length=self.gen_istft_n_fft)
|
937 |
+
else:
|
938 |
+
self.stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size,
|
939 |
+
win_length=self.gen_istft_n_fft)
|
940 |
+
|
941 |
+
def forward(self, x, g=None):
|
942 |
+
x = self.conv_pre(x)
|
943 |
+
for i in range(self.num_upsamples):
|
944 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
945 |
+
x = self.ups[i](x)
|
946 |
+
xs = None
|
947 |
+
for j in range(self.num_kernels):
|
948 |
+
if xs is None:
|
949 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
950 |
+
else:
|
951 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
952 |
+
x = xs / self.num_kernels
|
953 |
+
x = F.leaky_relu(x)
|
954 |
+
x = self.reflection_pad(x)
|
955 |
+
x = self.conv_post(x)
|
956 |
+
spec = torch.exp(x[:, :self.post_n_fft // 2 + 1, :])
|
957 |
+
phase = math.pi * torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
958 |
+
out = self.stft.inverse(spec, phase).to(x.device)
|
959 |
+
return out, None
|
960 |
+
|
961 |
+
def remove_weight_norm(self):
|
962 |
+
print('Removing weight norm...')
|
963 |
+
for l in self.ups:
|
964 |
+
remove_weight_norm(l)
|
965 |
+
for l in self.resblocks:
|
966 |
+
l.remove_weight_norm()
|
967 |
+
remove_weight_norm(self.conv_pre)
|
968 |
+
remove_weight_norm(self.conv_post)
|
969 |
+
|
970 |
+
|
971 |
+
class Multiband_iSTFT_Generator(torch.nn.Module): # !
|
972 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
973 |
+
upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands,
|
974 |
+
gin_channels=0, is_onnx=False):
|
975 |
+
super(Multiband_iSTFT_Generator, self).__init__()
|
976 |
+
# self.h = h
|
977 |
+
self.subbands = subbands
|
978 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
979 |
+
self.num_upsamples = len(upsample_rates)
|
980 |
+
self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
|
981 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
982 |
+
|
983 |
+
self.ups = nn.ModuleList()
|
984 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
985 |
+
self.ups.append(weight_norm(
|
986 |
+
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
987 |
+
k, u, padding=(k - u) // 2)))
|
988 |
+
|
989 |
+
self.resblocks = nn.ModuleList()
|
990 |
+
for i in range(len(self.ups)):
|
991 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
992 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
993 |
+
self.resblocks.append(resblock(ch, k, d))
|
994 |
+
|
995 |
+
self.post_n_fft = gen_istft_n_fft
|
996 |
+
self.ups.apply(init_weights)
|
997 |
+
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
998 |
+
self.reshape_pixelshuffle = []
|
999 |
+
|
1000 |
+
self.subband_conv_post = weight_norm(Conv1d(ch, self.subbands * (self.post_n_fft + 2), 7, 1, padding=3))
|
1001 |
+
|
1002 |
+
self.subband_conv_post.apply(init_weights)
|
1003 |
+
|
1004 |
+
self.gen_istft_n_fft = gen_istft_n_fft
|
1005 |
+
self.gen_istft_hop_size = gen_istft_hop_size
|
1006 |
+
|
1007 |
+
#- for onnx
|
1008 |
+
if is_onnx == True:
|
1009 |
+
self.stft = OnnxSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft)
|
1010 |
+
else:
|
1011 |
+
self.stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft)
|
1012 |
+
|
1013 |
+
def forward(self, x, g=None):
|
1014 |
+
'''
|
1015 |
+
stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size,
|
1016 |
+
win_length=self.gen_istft_n_fft).to(x.device) # !
|
1017 |
+
'''
|
1018 |
+
stft = self.stft.to(x.device)
|
1019 |
+
pqmf = PQMF(x.device)
|
1020 |
+
|
1021 |
+
x = self.conv_pre(x) # [B, ch, length]
|
1022 |
+
|
1023 |
+
for i in range(self.num_upsamples):
|
1024 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1025 |
+
x = self.ups[i](x)
|
1026 |
+
|
1027 |
+
xs = None
|
1028 |
+
for j in range(self.num_kernels):
|
1029 |
+
if xs is None:
|
1030 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
1031 |
+
else:
|
1032 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
1033 |
+
x = xs / self.num_kernels
|
1034 |
+
|
1035 |
+
x = F.leaky_relu(x)
|
1036 |
+
x = self.reflection_pad(x)
|
1037 |
+
x = self.subband_conv_post(x)
|
1038 |
+
x = torch.reshape(x, (x.shape[0], self.subbands, x.shape[1] // self.subbands, x.shape[-1]))
|
1039 |
+
|
1040 |
+
spec = torch.exp(x[:, :, :self.post_n_fft // 2 + 1, :])
|
1041 |
+
phase = math.pi * torch.sin(x[:, :, self.post_n_fft // 2 + 1:, :])
|
1042 |
+
|
1043 |
+
y_mb_hat = stft.inverse(
|
1044 |
+
torch.reshape(spec, (spec.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, spec.shape[-1])),
|
1045 |
+
torch.reshape(phase, (phase.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, phase.shape[-1])))
|
1046 |
+
y_mb_hat = torch.reshape(y_mb_hat, (x.shape[0], self.subbands, 1, y_mb_hat.shape[-1]))
|
1047 |
+
y_mb_hat = y_mb_hat.squeeze(-2)
|
1048 |
+
|
1049 |
+
y_g_hat = pqmf.synthesis(y_mb_hat)
|
1050 |
+
|
1051 |
+
return y_g_hat, y_mb_hat
|
1052 |
+
|
1053 |
+
def remove_weight_norm(self):
|
1054 |
+
print('Removing weight norm...')
|
1055 |
+
for l in self.ups:
|
1056 |
+
remove_weight_norm(l)
|
1057 |
+
for l in self.resblocks:
|
1058 |
+
l.remove_weight_norm()
|
1059 |
+
|
1060 |
+
|
1061 |
+
class Multistream_iSTFT_Generator(torch.nn.Module):
|
1062 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
1063 |
+
upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands,
|
1064 |
+
gin_channels=0, is_onnx=False):
|
1065 |
+
super(Multistream_iSTFT_Generator, self).__init__()
|
1066 |
+
# self.h = h
|
1067 |
+
self.subbands = subbands
|
1068 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
1069 |
+
self.num_upsamples = len(upsample_rates)
|
1070 |
+
self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
|
1071 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
1072 |
+
|
1073 |
+
self.ups = nn.ModuleList()
|
1074 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
1075 |
+
self.ups.append(weight_norm(
|
1076 |
+
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
1077 |
+
k, u, padding=(k - u) // 2)))
|
1078 |
+
|
1079 |
+
self.resblocks = nn.ModuleList()
|
1080 |
+
for i in range(len(self.ups)):
|
1081 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
1082 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
1083 |
+
self.resblocks.append(resblock(ch, k, d))
|
1084 |
+
|
1085 |
+
self.post_n_fft = gen_istft_n_fft
|
1086 |
+
self.ups.apply(init_weights)
|
1087 |
+
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
1088 |
+
self.reshape_pixelshuffle = []
|
1089 |
+
|
1090 |
+
self.subband_conv_post = weight_norm(Conv1d(ch, self.subbands * (self.post_n_fft + 2), 7, 1, padding=3))
|
1091 |
+
|
1092 |
+
self.subband_conv_post.apply(init_weights)
|
1093 |
+
|
1094 |
+
self.gen_istft_n_fft = gen_istft_n_fft
|
1095 |
+
self.gen_istft_hop_size = gen_istft_hop_size
|
1096 |
+
|
1097 |
+
updown_filter = torch.zeros((self.subbands, self.subbands, self.subbands)).float()
|
1098 |
+
for k in range(self.subbands):
|
1099 |
+
updown_filter[k, k, 0] = 1.0
|
1100 |
+
self.register_buffer("updown_filter", updown_filter)
|
1101 |
+
#self.multistream_conv_post = weight_norm(Conv1d(4, 1, kernel_size=63, bias=False, padding=get_padding(63, 1)))
|
1102 |
+
self.multistream_conv_post = weight_norm(Conv1d(self.subbands, 1, kernel_size=63, bias=False, padding=get_padding(63, 1))) # from MB-iSTFT-VITS-44100-Ja
|
1103 |
+
self.multistream_conv_post.apply(init_weights)
|
1104 |
+
|
1105 |
+
#- for onnx
|
1106 |
+
if is_onnx == True:
|
1107 |
+
self.stft = OnnxSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft)
|
1108 |
+
else:
|
1109 |
+
self.stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft)
|
1110 |
+
|
1111 |
+
def forward(self, x, g=None):
|
1112 |
+
'''
|
1113 |
+
stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size,
|
1114 |
+
win_length=self.gen_istft_n_fft).to(x.device) # !
|
1115 |
+
'''
|
1116 |
+
stft = self.stft.to(x.device)
|
1117 |
+
|
1118 |
+
# pqmf = PQMF(x.device)
|
1119 |
+
|
1120 |
+
x = self.conv_pre(x) # [B, ch, length]
|
1121 |
+
|
1122 |
+
for i in range(self.num_upsamples):
|
1123 |
+
|
1124 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1125 |
+
x = self.ups[i](x)
|
1126 |
+
|
1127 |
+
xs = None
|
1128 |
+
for j in range(self.num_kernels):
|
1129 |
+
if xs is None:
|
1130 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
1131 |
+
else:
|
1132 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
1133 |
+
x = xs / self.num_kernels
|
1134 |
+
|
1135 |
+
x = F.leaky_relu(x)
|
1136 |
+
x = self.reflection_pad(x)
|
1137 |
+
x = self.subband_conv_post(x)
|
1138 |
+
x = torch.reshape(x, (x.shape[0], self.subbands, x.shape[1] // self.subbands, x.shape[-1]))
|
1139 |
+
|
1140 |
+
spec = torch.exp(x[:, :, :self.post_n_fft // 2 + 1, :])
|
1141 |
+
phase = math.pi * torch.sin(x[:, :, self.post_n_fft // 2 + 1:, :])
|
1142 |
+
|
1143 |
+
y_mb_hat = stft.inverse(
|
1144 |
+
torch.reshape(spec, (spec.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, spec.shape[-1])),
|
1145 |
+
torch.reshape(phase, (phase.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, phase.shape[-1])))
|
1146 |
+
y_mb_hat = torch.reshape(y_mb_hat, (x.shape[0], self.subbands, 1, y_mb_hat.shape[-1]))
|
1147 |
+
y_mb_hat = y_mb_hat.squeeze(-2)
|
1148 |
+
|
1149 |
+
#y_mb_hat = F.conv_transpose1d(y_mb_hat, self.updown_filter.cuda(x.device) * self.subbands, stride=self.subbands)
|
1150 |
+
y_mb_hat = F.conv_transpose1d(y_mb_hat, self.updown_filter.to(x.device) * self.subbands, stride=self.subbands)
|
1151 |
+
|
1152 |
+
y_g_hat = self.multistream_conv_post(y_mb_hat)
|
1153 |
+
|
1154 |
+
return y_g_hat, y_mb_hat
|
1155 |
+
|
1156 |
+
def remove_weight_norm(self):
|
1157 |
+
print('Removing weight norm...')
|
1158 |
+
for l in self.ups:
|
1159 |
+
remove_weight_norm(l)
|
1160 |
+
for l in self.resblocks:
|
1161 |
+
l.remove_weight_norm()
|
1162 |
+
|
1163 |
+
|
1164 |
class DiscriminatorP(torch.nn.Module):
|
1165 |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
1166 |
super(DiscriminatorP, self).__init__()
|
|
|
1273 |
upsample_rates,
|
1274 |
upsample_initial_channel,
|
1275 |
upsample_kernel_sizes,
|
1276 |
+
gen_istft_n_fft,
|
1277 |
+
gen_istft_hop_size,
|
1278 |
n_speakers=0,
|
1279 |
gin_channels=0,
|
1280 |
use_sdp=True,
|
1281 |
+
ms_istft_vits=False,
|
1282 |
+
mb_istft_vits=False,
|
1283 |
+
subbands=False,
|
1284 |
+
istft_vits=False,
|
1285 |
+
is_onnx=False,
|
1286 |
**kwargs):
|
1287 |
|
1288 |
super().__init__()
|
|
|
1304 |
self.segment_size = segment_size
|
1305 |
self.n_speakers = n_speakers
|
1306 |
self.gin_channels = gin_channels
|
1307 |
+
self.ms_istft_vits = ms_istft_vits
|
1308 |
+
self.mb_istft_vits = mb_istft_vits
|
1309 |
+
self.istft_vits = istft_vits
|
1310 |
+
self.use_spk_conditioned_encoder = kwargs.get("use_spk_conditioned_encoder", False)
|
1311 |
+
self.use_transformer_flows = kwargs.get("use_transformer_flows", False)
|
1312 |
+
self.transformer_flow_type = kwargs.get("transformer_flow_type", "mono_layer_post_residual")
|
1313 |
+
if self.use_transformer_flows:
|
1314 |
+
assert self.transformer_flow_type in AVAILABLE_FLOW_TYPES, f"transformer_flow_type must be one of {AVAILABLE_FLOW_TYPES}"
|
1315 |
self.use_sdp = use_sdp
|
1316 |
+
# self.use_duration_discriminator = kwargs.get("use_duration_discriminator", False)
|
1317 |
+
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
1318 |
+
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
1319 |
+
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
1320 |
+
|
1321 |
+
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
1322 |
+
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
1323 |
+
self.enc_gin_channels = gin_channels
|
1324 |
+
else:
|
1325 |
+
self.enc_gin_channels = 0
|
1326 |
self.enc_p = TextEncoder(n_vocab,
|
1327 |
inter_channels,
|
1328 |
hidden_channels,
|
|
|
1330 |
n_heads,
|
1331 |
n_layers,
|
1332 |
kernel_size,
|
1333 |
+
p_dropout,
|
1334 |
+
gin_channels=self.enc_gin_channels)
|
1335 |
+
|
1336 |
+
if mb_istft_vits == True:
|
1337 |
+
print('Multi-band iSTFT VITS2')
|
1338 |
+
self.dec = Multiband_iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes,
|
1339 |
+
resblock_dilation_sizes,
|
1340 |
+
upsample_rates, upsample_initial_channel, upsample_kernel_sizes,
|
1341 |
+
gen_istft_n_fft, gen_istft_hop_size, subbands,
|
1342 |
+
gin_channels=gin_channels, is_onnx=is_onnx)
|
1343 |
+
elif ms_istft_vits == True:
|
1344 |
+
print('Multi-stream iSTFT VITS2')
|
1345 |
+
self.dec = Multistream_iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes,
|
1346 |
+
resblock_dilation_sizes,
|
1347 |
+
upsample_rates, upsample_initial_channel, upsample_kernel_sizes,
|
1348 |
+
gen_istft_n_fft, gen_istft_hop_size, subbands,
|
1349 |
+
gin_channels=gin_channels, is_onnx=is_onnx)
|
1350 |
+
elif istft_vits == True:
|
1351 |
+
print('iSTFT-VITS2')
|
1352 |
+
self.dec = iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes,
|
1353 |
+
upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft,
|
1354 |
+
gen_istft_hop_size, gin_channels=gin_channels, is_onnx=is_onnx)
|
1355 |
+
else:
|
1356 |
+
print('No iSTFT arguments found in json file')
|
1357 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes,
|
1358 |
+
upsample_rates,
|
1359 |
+
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels) # vits 2
|
1360 |
+
|
1361 |
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
1362 |
gin_channels=gin_channels)
|
1363 |
+
# self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
1364 |
+
self.flow = ResidualCouplingTransformersBlock(
|
1365 |
+
inter_channels,
|
1366 |
+
hidden_channels,
|
1367 |
+
5,
|
1368 |
+
1,
|
1369 |
+
4,
|
1370 |
+
gin_channels=gin_channels,
|
1371 |
+
use_transformer_flows=self.use_transformer_flows,
|
1372 |
+
transformer_flow_type=self.transformer_flow_type
|
1373 |
+
)
|
1374 |
|
1375 |
if use_sdp:
|
1376 |
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
1377 |
else:
|
1378 |
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
1379 |
|
1380 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
|
|
1381 |
|
1382 |
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
1383 |
+
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
1384 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
1385 |
|
1386 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, g=g) # vits2?
|
|
|
|
|
|
|
|
|
|
|
1387 |
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
1388 |
z_p = self.flow(z, y_mask, g=g)
|
1389 |
|
|
|
1397 |
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
1398 |
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
1399 |
|
1400 |
+
if self.use_noise_scaled_mas:
|
1401 |
+
epsilon = torch.std(neg_cent) * torch.randn_like(neg_cent) * self.current_mas_noise_scale
|
1402 |
+
neg_cent = neg_cent + epsilon
|
1403 |
+
|
1404 |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
1405 |
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
1406 |
|
|
|
1408 |
if self.use_sdp:
|
1409 |
l_length = self.dp(x, x_mask, w, g=g)
|
1410 |
l_length = l_length / torch.sum(x_mask)
|
1411 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=1.)
|
1412 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
1413 |
else:
|
1414 |
logw_ = torch.log(w + 1e-6) * x_mask
|
1415 |
logw = self.dp(x, x_mask, g=g)
|
|
|
1420 |
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
1421 |
|
1422 |
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
1423 |
+
o, o_mb = self.dec(z_slice, g=g)
|
1424 |
+
return o, o_mb, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), (x, logw, logw_)
|
1425 |
|
1426 |
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
1427 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
|
|
|
|
|
|
|
|
1428 |
|
1429 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, g=g)
|
1430 |
if self.use_sdp:
|
1431 |
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
1432 |
else:
|
|
|
1444 |
|
1445 |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
1446 |
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
|
|
|
|
1447 |
|
1448 |
+
o, o_mb = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
1449 |
+
return o, o_mb, attn, y_mask, (z, z_p, m_p, logs_p)
|
1450 |
+
|
1451 |
+
|
1452 |
+
#'''
|
1453 |
+
## currently vits-2 is not capable of voice conversion
|
1454 |
+
# comment - choihkk : Assuming the use of the ResidualCouplingTransformersLayer2 module, it seems that voice conversion is possible
|
1455 |
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
1456 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
1457 |
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
1458 |
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
1459 |
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
1460 |
z_p = self.flow(z, y_mask, g=g_src)
|
1461 |
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
1462 |
+
o_hat, o_hat_mb = self.dec(z_hat * y_mask, g=g_tgt)
|
1463 |
+
return o_hat, o_hat_mb, y_mask, (z, z_p, z_hat)
|
1464 |
+
#'''
|