Spaces:
Running
Running
ORI-Muchim
commited on
Update pqmf.py
Browse files
pqmf.py
CHANGED
@@ -75,15 +75,15 @@ class PQMF(torch.nn.Module):
|
|
75 |
(-1) ** k * np.pi / 4)
|
76 |
|
77 |
# convert to tensor
|
78 |
-
analysis_filter = torch.from_numpy(h_analysis).float().unsqueeze(1)
|
79 |
-
synthesis_filter = torch.from_numpy(h_synthesis).float().unsqueeze(0)
|
80 |
|
81 |
# register coefficients as beffer
|
82 |
self.register_buffer("analysis_filter", analysis_filter)
|
83 |
self.register_buffer("synthesis_filter", synthesis_filter)
|
84 |
|
85 |
# filter for downsampling & upsampling
|
86 |
-
updown_filter = torch.zeros((subbands, subbands, subbands)).float()
|
87 |
for k in range(subbands):
|
88 |
updown_filter[k, k, 0] = 1.0
|
89 |
self.register_buffer("updown_filter", updown_filter)
|
|
|
75 |
(-1) ** k * np.pi / 4)
|
76 |
|
77 |
# convert to tensor
|
78 |
+
analysis_filter = torch.from_numpy(h_analysis).float().unsqueeze(1)
|
79 |
+
synthesis_filter = torch.from_numpy(h_synthesis).float().unsqueeze(0)
|
80 |
|
81 |
# register coefficients as beffer
|
82 |
self.register_buffer("analysis_filter", analysis_filter)
|
83 |
self.register_buffer("synthesis_filter", synthesis_filter)
|
84 |
|
85 |
# filter for downsampling & upsampling
|
86 |
+
updown_filter = torch.zeros((subbands, subbands, subbands)).float()
|
87 |
for k in range(subbands):
|
88 |
updown_filter[k, k, 0] = 1.0
|
89 |
self.register_buffer("updown_filter", updown_filter)
|