from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler import gradio as gr import cpuinfo import torch from PIL import Image from diffusers import OnnxStableDiffusionPipeline import pipeline_openvino_stable_diffusion model_id = 'OFA-Sys/small-stable-diffusion-v0' prefix = '' scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler") onnx_pipe = OnnxStableDiffusionPipeline.from_pretrained( "OFA-Sys/small-stable-diffusion-v0", revision="onnx", provider="CPUExecutionProvider", ) pipe = pipeline_openvino_stable_diffusion.OpenVINOStableDiffusionPipeline.from_onnx_pipeline(onnx_pipe) def error_str(error, title="Error"): return f"""#### {title} {error}""" if error else "" def inference(prompt, guidance, steps, width=512, height=512, seed=0, neg_prompt=""): generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None try: return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None except Exception as e: return None, error_str(e) def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator): result = pipe( prompt, negative_prompt = neg_prompt, num_inference_steps = int(steps), guidance_scale = guidance, width = width, height = height, generator = generator) return result.images[0] css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} """ with gr.Blocks(css=css) as demo: gr.HTML( f"""

Small Stable Diffusion V0

Demo for Small Stable Diffusion V0 Stable Diffusion model.

Running on CPUs with diffusion-deploy to speedup the inference.
""" ) with gr.Row(): with gr.Column(scale=55): with gr.Group(): with gr.Row(): prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False) generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) image_out = gr.Image(height=512) error_output = gr.Markdown() with gr.Column(scale=45): with gr.Tab("Options"): with gr.Group(): neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") with gr.Row(): guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) steps = gr.Slider(label="Steps", value=15, minimum=2, maximum=75, step=1) with gr.Row(): width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) inputs = [prompt, guidance, steps, width, height, seed, neg_prompt] outputs = [image_out, error_output] prompt.submit(inference, inputs=inputs, outputs=outputs) generate.click(inference, inputs=inputs, outputs=outputs) gr.HTML("""

This space was created using SD Space Creator.

""") print(cpuinfo.get_cpu_info()) demo.queue(concurrency_count=1) demo.launch()