aadnk's picture
Refactor function names
883c794
raw
history blame
10.3 kB
from typing import Iterator
from io import StringIO
import os
import pathlib
import tempfile
# External programs
import whisper
import ffmpeg
# UI
import gradio as gr
from src.download import ExceededMaximumDuration, download_url
from src.utils import slugify, write_srt, write_vtt
from src.vad import VadPeriodicTranscription, VadSileroTranscription
# Limitations (set to -1 to disable)
DEFAULT_INPUT_AUDIO_MAX_DURATION = 600 # seconds
# Whether or not to automatically delete all uploaded files, to save disk space
DELETE_UPLOADED_FILES = True
# Gradio seems to truncate files without keeping the extension, so we need to truncate the file prefix ourself
MAX_FILE_PREFIX_LENGTH = 17
LANGUAGES = [
"English", "Chinese", "German", "Spanish", "Russian", "Korean",
"French", "Japanese", "Portuguese", "Turkish", "Polish", "Catalan",
"Dutch", "Arabic", "Swedish", "Italian", "Indonesian", "Hindi",
"Finnish", "Vietnamese", "Hebrew", "Ukrainian", "Greek", "Malay",
"Czech", "Romanian", "Danish", "Hungarian", "Tamil", "Norwegian",
"Thai", "Urdu", "Croatian", "Bulgarian", "Lithuanian", "Latin",
"Maori", "Malayalam", "Welsh", "Slovak", "Telugu", "Persian",
"Latvian", "Bengali", "Serbian", "Azerbaijani", "Slovenian",
"Kannada", "Estonian", "Macedonian", "Breton", "Basque", "Icelandic",
"Armenian", "Nepali", "Mongolian", "Bosnian", "Kazakh", "Albanian",
"Swahili", "Galician", "Marathi", "Punjabi", "Sinhala", "Khmer",
"Shona", "Yoruba", "Somali", "Afrikaans", "Occitan", "Georgian",
"Belarusian", "Tajik", "Sindhi", "Gujarati", "Amharic", "Yiddish",
"Lao", "Uzbek", "Faroese", "Haitian Creole", "Pashto", "Turkmen",
"Nynorsk", "Maltese", "Sanskrit", "Luxembourgish", "Myanmar", "Tibetan",
"Tagalog", "Malagasy", "Assamese", "Tatar", "Hawaiian", "Lingala",
"Hausa", "Bashkir", "Javanese", "Sundanese"
]
class WhisperTranscriber:
def __init__(self, inputAudioMaxDuration: float = DEFAULT_INPUT_AUDIO_MAX_DURATION, deleteUploadedFiles: bool = DELETE_UPLOADED_FILES):
self.model_cache = dict()
self.vad_model = None
self.inputAudioMaxDuration = inputAudioMaxDuration
self.deleteUploadedFiles = deleteUploadedFiles
def transcribe_file(self, modelName, languageName, urlData, uploadFile, microphoneData, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding):
try:
source, sourceName = self.__get_source(urlData, uploadFile, microphoneData)
try:
selectedLanguage = languageName.lower() if len(languageName) > 0 else None
selectedModel = modelName if modelName is not None else "base"
model = self.model_cache.get(selectedModel, None)
if not model:
model = whisper.load_model(selectedModel)
self.model_cache[selectedModel] = model
# Callable for processing an audio file
whisperCallable = lambda audio : model.transcribe(audio, language=selectedLanguage, task=task)
# The results
if (vad == 'silero-vad'):
# Use Silero VAD and include gaps
if (self.vad_model is None):
self.vad_model = VadSileroTranscription()
process_gaps = VadSileroTranscription(transcribe_non_speech = True,
max_silent_period=vadMergeWindow, max_merge_size=vadMaxMergeSize,
segment_padding_left=vadPadding, segment_padding_right=vadPadding, copy=self.vad_model)
result = process_gaps.transcribe(source, whisperCallable)
elif (vad == 'silero-vad-skip-gaps'):
# Use Silero VAD
if (self.vad_model is None):
self.vad_model = VadSileroTranscription()
skip_gaps = VadSileroTranscription(transcribe_non_speech = False,
max_silent_period=vadMergeWindow, max_merge_size=vadMaxMergeSize,
segment_padding_left=vadPadding, segment_padding_right=vadPadding, copy=self.vad_model)
result = skip_gaps.transcribe(source, whisperCallable)
elif (vad == 'periodic-vad'):
# Very simple VAD - mark every 5 minutes as speech. This makes it less likely that Whisper enters an infinite loop, but
# it may create a break in the middle of a sentence, causing some artifacts.
periodic_vad = VadPeriodicTranscription(periodic_duration=vadMaxMergeSize)
result = periodic_vad.transcribe(source, whisperCallable)
else:
# Default VAD
result = whisperCallable(source)
text = result["text"]
language = result["language"]
languageMaxLineWidth = self.__get_max_line_width(language)
print("Max line width " + str(languageMaxLineWidth))
vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth)
srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth)
# Files that can be downloaded
downloadDirectory = tempfile.mkdtemp()
filePrefix = slugify(sourceName, allow_unicode=True)
download = []
download.append(self.__create_file(srt, downloadDirectory, filePrefix + "-subs.srt"));
download.append(self.__create_file(vtt, downloadDirectory, filePrefix + "-subs.vtt"));
download.append(self.__create_file(text, downloadDirectory, filePrefix + "-transcript.txt"));
return download, text, vtt
finally:
# Cleanup source
if self.deleteUploadedFiles:
print("Deleting source file " + source)
os.remove(source)
except ExceededMaximumDuration as e:
return [], ("[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s"), "[ERROR]"
def clear_cache(self):
self.model_cache = dict()
def __get_source(self, urlData, uploadFile, microphoneData):
if urlData:
# Download from YouTube
source = download_url(urlData, self.inputAudioMaxDuration)
else:
# File input
source = uploadFile if uploadFile is not None else microphoneData
if self.inputAudioMaxDuration > 0:
# Calculate audio length
audioDuration = ffmpeg.probe(source)["format"]["duration"]
if float(audioDuration) > self.inputAudioMaxDuration:
raise ExceededMaximumDuration(videoDuration=audioDuration, maxDuration=self.inputAudioMaxDuration, message="Video is too long")
file_path = pathlib.Path(source)
sourceName = file_path.stem[:MAX_FILE_PREFIX_LENGTH] + file_path.suffix
return source, sourceName
def __get_max_line_width(self, language: str) -> int:
if (language and language.lower() in ["japanese", "ja", "chinese", "zh"]):
# Chinese characters and kana are wider, so limit line length to 40 characters
return 40
else:
# TODO: Add more languages
# 80 latin characters should fit on a 1080p/720p screen
return 80
def __get_subs(self, segments: Iterator[dict], format: str, maxLineWidth: int) -> str:
segmentStream = StringIO()
if format == 'vtt':
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
elif format == 'srt':
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
else:
raise Exception("Unknown format " + format)
segmentStream.seek(0)
return segmentStream.read()
def __create_file(self, text: str, directory: str, fileName: str) -> str:
# Write the text to a file
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file:
file.write(text)
return file.name
def create_ui(inputAudioMaxDuration, share=False, server_name: str = None):
ui = WhisperTranscriber(inputAudioMaxDuration)
ui_description = "Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse "
ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition "
ui_description += " as well as speech translation and language identification. "
ui_description += "\n\n\n\nFor longer audio files (>10 minutes), it is recommended that you select Silero VAD (Voice Activity Detector) in the VAD option."
if inputAudioMaxDuration > 0:
ui_description += "\n\n" + "Max audio file length: " + str(inputAudioMaxDuration) + " s"
ui_article = "Read the [documentation here](https://huggingface.co/spaces/aadnk/whisper-webui/blob/main/docs/options.md)"
demo = gr.Interface(fn=ui.transcribe_file, description=ui_description, article=ui_article, inputs=[
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"),
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"),
gr.Text(label="URL (YouTube, etc.)"),
gr.Audio(source="upload", type="filepath", label="Upload Audio"),
gr.Audio(source="microphone", type="filepath", label="Microphone Input"),
gr.Dropdown(choices=["transcribe", "translate"], label="Task"),
gr.Dropdown(choices=["none", "silero-vad", "silero-vad-skip-gaps", "periodic-vad"], label="VAD"),
gr.Number(label="VAD - Merge Window (s)", precision=0, value=5),
gr.Number(label="VAD - Max Merge Size (s)", precision=0, value=150),
gr.Number(label="VAD - Padding (s)", precision=None, value=1)
], outputs=[
gr.File(label="Download"),
gr.Text(label="Transcription"),
gr.Text(label="Segments")
])
demo.launch(share=share, server_name=server_name)
if __name__ == '__main__':
create_ui(DEFAULT_INPUT_AUDIO_MAX_DURATION)