Spaces:
Sleeping
Sleeping
File size: 85,646 Bytes
1a5d9a0 b6ac700 ec7cc5c b6ac700 8077be2 b6ac700 8d120bf b6ac700 a1da02d 18bb72f b6ac700 1e744c4 b6ac700 1e744c4 b01e56c db65615 90c1d05 4c650d7 3ab1530 8077be2 1e744c4 4c650d7 b6ac700 ed2c604 b6ac700 18bb72f b6ac700 18bb72f 3cd7d59 18bb72f 6fc9a01 18bb72f 67af9e2 1e744c4 67af9e2 1e744c4 ec7cc5c 1e744c4 ec7cc5c 2def7a1 ec7cc5c 1e744c4 50167d4 1e744c4 6fc9a01 1e744c4 b6ac700 92bc446 1e744c4 28514b1 1e744c4 b6ac700 92bc446 1e744c4 b6ac700 1e744c4 92bc446 90c1d05 1e744c4 92bc446 b6ac700 922fe2a b6ac700 1e744c4 b6ac700 92bc446 b6ac700 92bc446 b6ac700 92bc446 b6ac700 1e744c4 ec7cc5c 922fe2a 50167d4 1e744c4 77b92a2 b0efdc6 b6ac700 1e744c4 b0efdc6 1e744c4 b0efdc6 50167d4 b0efdc6 50167d4 b0efdc6 b6ac700 922fe2a ec7cc5c b6ac700 9428712 b6ac700 50167d4 9428712 b6ac700 ec7cc5c 28514b1 ec7cc5c 28514b1 b6ac700 1e744c4 b6ac700 1e744c4 b6ac700 ec7cc5c aa33666 b6ac700 ec7cc5c 922fe2a ec7cc5c b6ac700 92bc446 b6ac700 92bc446 b6ac700 9b6dda4 b6ac700 50167d4 b6ac700 1e744c4 b6ac700 8077be2 b6ac700 922fe2a b6ac700 1e744c4 8077be2 92bc446 8077be2 1e744c4 8077be2 1e744c4 8077be2 9b6dda4 8077be2 1e744c4 8077be2 92bc446 9b6dda4 92bc446 8077be2 1e744c4 8077be2 922fe2a b6ac700 1e744c4 3ab1530 b6ac700 1e744c4 b6ac700 86a43ad b6ac700 1e744c4 b6ac700 18bb72f b6ac700 90c1d05 db65615 90c1d05 db65615 90c1d05 db65615 90c1d05 db65615 90c1d05 db65615 90c1d05 db65615 90c1d05 b6ac700 40311b7 1e744c4 40311b7 1e744c4 2601bfd 1e744c4 2601bfd 1e744c4 b6ac700 05a2178 b6ac700 1e744c4 b6ac700 1e744c4 b6ac700 1e744c4 b6ac700 1e744c4 e8762f9 4e2f72e b01e56c 85d6c89 d0c7a01 8e80889 1e744c4 e8762f9 40311b7 e8762f9 4e2f72e b01e56c db65615 b01e56c b6ac700 1e744c4 d0c7a01 85d6c89 1e744c4 8e80889 1e744c4 ec7cc5c b6ac700 a1da02d 1e744c4 6fc9a01 1a5d9a0 922fe2a ec7cc5c 1a5d9a0 ec7cc5c b6ac700 1a5d9a0 b6ac700 67af9e2 8077be2 67af9e2 b01e56c 67af9e2 8077be2 67af9e2 1a5d9a0 90c1d05 db65615 90c1d05 67af9e2 1e744c4 67af9e2 90c1d05 b6ac700 90c1d05 b6ac700 40311b7 4c650d7 b6ac700 1e744c4 b6ac700 1e744c4 4c650d7 1e744c4 4c650d7 9428712 b0efdc6 4c650d7 1e744c4 3cd7d59 b6ac700 77b92a2 40311b7 8077be2 b6ac700 6250a98 b6ac700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 |
from datetime import datetime
import json
import math
from typing import Iterator, Union, List, Dict, Any
import argparse
from io import StringIO
import time
import os
import pathlib
import tempfile
import zipfile
import numpy as np
import torch
from src.config import VAD_INITIAL_PROMPT_MODE_VALUES, ApplicationConfig, VadInitialPromptMode
from src.diarization.diarization import Diarization
from src.diarization.diarizationContainer import DiarizationContainer
from src.hooks.progressListener import ProgressListener
from src.hooks.subTaskProgressListener import SubTaskProgressListener
from src.hooks.whisperProgressHook import create_progress_listener_handle
from src.modelCache import ModelCache
from src.prompts.jsonPromptStrategy import JsonPromptStrategy
from src.prompts.prependPromptStrategy import PrependPromptStrategy
from src.source import get_audio_source_collection
from src.vadParallel import ParallelContext, ParallelTranscription
# External programs
import ffmpeg
# UI
import gradio as gr
from src.download import ExceededMaximumDuration, download_url
from src.utils import optional_int, slugify, str2bool, write_srt, write_srt_original, write_vtt
from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription
from src.whisper.abstractWhisperContainer import AbstractWhisperContainer
from src.whisper.whisperFactory import create_whisper_container
from src.translation.translationModel import TranslationModel
from src.translation.translationLangs import (TranslationLang,
_TO_LANG_CODE_WHISPER, sort_lang_by_whisper_codes,
get_lang_from_whisper_name, get_lang_from_whisper_code, get_lang_from_nllb_name, get_lang_from_m2m100_name, get_lang_from_seamlessT_Tx_name,
get_lang_whisper_names, get_lang_nllb_names, get_lang_m2m100_names, get_lang_seamlessT_Tx_names)
import re
import shutil
import zhconv
import tqdm
import traceback
# Configure more application defaults in config.json5
# Gradio seems to truncate files without keeping the extension, so we need to truncate the file prefix ourself
MAX_FILE_PREFIX_LENGTH = 17
# Limit auto_parallel to a certain number of CPUs (specify vad_cpu_cores to get a higher number)
MAX_AUTO_CPU_CORES = 8
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v1", "large-v2", "large-v3"]
class VadOptions:
def __init__(self, vad: str = None, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1,
vadInitialPromptMode: Union[VadInitialPromptMode, str] = VadInitialPromptMode.PREPREND_FIRST_SEGMENT):
self.vad = vad
self.vadMergeWindow = vadMergeWindow
self.vadMaxMergeSize = vadMaxMergeSize
self.vadPadding = vadPadding
self.vadPromptWindow = vadPromptWindow
self.vadInitialPromptMode = vadInitialPromptMode if isinstance(vadInitialPromptMode, VadInitialPromptMode) \
else VadInitialPromptMode.from_string(vadInitialPromptMode)
class WhisperTranscriber:
def __init__(self, input_audio_max_duration: float = None, vad_process_timeout: float = None,
vad_cpu_cores: int = 1, delete_uploaded_files: bool = False, output_dir: str = None,
app_config: ApplicationConfig = None):
self.model_cache = ModelCache()
self.parallel_device_list = None
self.gpu_parallel_context = None
self.cpu_parallel_context = None
self.vad_process_timeout = vad_process_timeout
self.vad_cpu_cores = vad_cpu_cores
self.vad_model = None
self.inputAudioMaxDuration = input_audio_max_duration
self.deleteUploadedFiles = delete_uploaded_files
self.output_dir = output_dir
# Support for diarization
self.diarization: DiarizationContainer = None
# Dictionary with parameters to pass to diarization.run - if None, diarization is not enabled
self.diarization_kwargs = None
self.app_config = app_config
def set_parallel_devices(self, vad_parallel_devices: str):
self.parallel_device_list = [ device.strip() for device in vad_parallel_devices.split(",") ] if vad_parallel_devices else None
def set_auto_parallel(self, auto_parallel: bool):
if auto_parallel:
if torch.cuda.is_available():
self.parallel_device_list = [ str(gpu_id) for gpu_id in range(torch.cuda.device_count())]
self.vad_cpu_cores = min(os.cpu_count(), MAX_AUTO_CPU_CORES)
print("[Auto parallel] Using GPU devices " + str(self.parallel_device_list) + " and " + str(self.vad_cpu_cores) + " CPU cores for VAD/transcription.")
def set_diarization(self, auth_token: str, enable_daemon_process: bool = True, **kwargs):
if self.diarization is None:
self.diarization = DiarizationContainer(auth_token=auth_token, enable_daemon_process=enable_daemon_process,
auto_cleanup_timeout_seconds=self.app_config.diarization_process_timeout,
cache=self.model_cache)
# Set parameters
self.diarization_kwargs = kwargs
def unset_diarization(self):
if self.diarization is not None:
self.diarization.cleanup()
self.diarization_kwargs = None
# Entry function for the simple or full tab, Queue mode disabled: progress bars will not be shown
def transcribe_entry(self, data: dict): return self.transcribe_entry_progress(data)
# Entry function for the simple or full tab with progress, Progress tracking requires queuing to be enabled
def transcribe_entry_progress(self, data: dict, progress=gr.Progress()):
dataDict = {}
for key, value in data.items():
dataDict.update({key.elem_id: value})
return self.transcribe_webui(dataDict, progress=progress)
def transcribe_webui(self, decodeOptions: dict, progress: gr.Progress = None):
"""
Transcribe an audio file using Whisper
https://github.com/openai/whisper/blob/main/whisper/transcribe.py#L37
Parameters
----------
model: Whisper
The Whisper model instance
temperature: Union[float, Tuple[float, ...]]
Temperature for sampling. It can be a tuple of temperatures, which will be successively used
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
compression_ratio_threshold: float
If the gzip compression ratio is above this value, treat as failed
logprob_threshold: float
If the average log probability over sampled tokens is below this value, treat as failed
no_speech_threshold: float
If the no_speech probability is higher than this value AND the average log probability
over sampled tokens is below `logprob_threshold`, consider the segment as silent
condition_on_previous_text: bool
if True, the previous output of the model is provided as a prompt for the next window;
disabling may make the text inconsistent across windows, but the model becomes less prone to
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
word_timestamps: bool
Extract word-level timestamps using the cross-attention pattern and dynamic time warping,
and include the timestamps for each word in each segment.
prepend_punctuations: str
If word_timestamps is True, merge these punctuation symbols with the next word
append_punctuations: str
If word_timestamps is True, merge these punctuation symbols with the previous word
initial_prompt: Optional[str]
Optional text to provide as a prompt for the first window. This can be used to provide, or
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
to make it more likely to predict those word correctly.
decode_options: dict
Keyword arguments to construct `DecodingOptions` instances
https://github.com/openai/whisper/blob/main/whisper/decoding.py#L81
task: str = "transcribe"
whether to perform X->X "transcribe" or X->English "translate"
language: Optional[str] = None
language that the audio is in; uses detected language if None
temperature: float = 0.0
sample_len: Optional[int] = None # maximum number of tokens to sample
best_of: Optional[int] = None # number of independent sample trajectories, if t > 0
beam_size: Optional[int] = None # number of beams in beam search, if t == 0
patience: Optional[float] = None # patience in beam search (arxiv:2204.05424)
sampling-related options
length_penalty: Optional[float] = None
"alpha" in Google NMT, or None for length norm, when ranking generations
to select which to return among the beams or best-of-N samples
prompt: Optional[Union[str, List[int]]] = None # for the previous context
prefix: Optional[Union[str, List[int]]] = None # to prefix the current context
text or tokens to feed as the prompt or the prefix; for more info:
https://github.com/openai/whisper/discussions/117#discussioncomment-3727051
suppress_tokens: Optional[Union[str, Iterable[int]]] = "-1"
suppress_blank: bool = True # this will suppress blank outputs
list of tokens ids (or comma-separated token ids) to suppress
"-1" will suppress a set of symbols as defined in `tokenizer.non_speech_tokens()`
without_timestamps: bool = False # use <|notimestamps|> to sample text tokens only
max_initial_timestamp: Optional[float] = 1.0
timestamp sampling options
fp16: bool = True # use fp16 for most of the calculation
implementation details
repetition_penalty: float
The parameter for repetition penalty. Between 1.0 and infinity. 1.0 means no penalty. Default to 1.0.
no_repeat_ngram_size: int
The model ensures that a sequence of words of no_repeat_ngram_size isn’t repeated in the output sequence. If specified, it must be a positive integer greater than 1.
"""
try:
whisperModelName: str = decodeOptions.pop("whisperModelName")
whisperLangName: str = decodeOptions.pop("whisperLangName")
sourceInput: str = decodeOptions.pop("sourceInput")
urlData: str = decodeOptions.pop("urlData")
multipleFiles: List = decodeOptions.pop("multipleFiles")
microphoneData: str = decodeOptions.pop("microphoneData")
task: str = decodeOptions.pop("task")
vad: str = decodeOptions.pop("vad")
vadMergeWindow: float = decodeOptions.pop("vadMergeWindow")
vadMaxMergeSize: float = decodeOptions.pop("vadMaxMergeSize")
vadPadding: float = decodeOptions.pop("vadPadding", self.app_config.vad_padding)
vadPromptWindow: float = decodeOptions.pop("vadPromptWindow", self.app_config.vad_prompt_window)
vadInitialPromptMode: str = decodeOptions.pop("vadInitialPromptMode", self.app_config.vad_initial_prompt_mode)
self.vad_process_timeout: float = decodeOptions.pop("vadPocessTimeout", self.vad_process_timeout)
self.whisperSegmentsFilters: List[List] = []
inputFilter: bool = decodeOptions.pop("whisperSegmentsFilter", None)
inputFilters = []
for idx in range(1,len(self.app_config.whisper_segments_filters) + 1,1):
inputFilters.append(decodeOptions.pop(f"whisperSegmentsFilter{idx}", None))
inputFilters = filter(None, inputFilters)
if inputFilter:
for inputFilter in inputFilters:
self.whisperSegmentsFilters.append([])
self.whisperSegmentsFilters[-1].append(inputFilter)
for text in inputFilter.split(","):
result = []
subFilter = [text] if "||" not in text else [strFilter_ for strFilter_ in text.lstrip("(").rstrip(")").split("||") if strFilter_]
for string in subFilter:
conditions = [condition for condition in string.split(" ") if condition]
if len(conditions) == 1 and conditions[0] == "segment_last":
pass
elif len(conditions) == 3:
conditions[-1] = float(conditions[-1])
else:
continue
result.append(conditions)
self.whisperSegmentsFilters[-1].append(result)
diarization: bool = decodeOptions.pop("diarization", False)
diarization_speakers: int = decodeOptions.pop("diarization_speakers", 2)
diarization_min_speakers: int = decodeOptions.pop("diarization_min_speakers", 1)
diarization_max_speakers: int = decodeOptions.pop("diarization_max_speakers", 8)
highlight_words: bool = decodeOptions.pop("highlight_words", False)
temperature: float = decodeOptions.pop("temperature", None)
temperature_increment_on_fallback: float = decodeOptions.pop("temperature_increment_on_fallback", None)
whisperRepetitionPenalty: float = decodeOptions.get("repetition_penalty", None)
whisperNoRepeatNgramSize: int = decodeOptions.get("no_repeat_ngram_size", None)
if whisperRepetitionPenalty is not None and whisperRepetitionPenalty <= 1.0:
decodeOptions.pop("repetition_penalty")
if whisperNoRepeatNgramSize is not None and whisperNoRepeatNgramSize <= 1:
decodeOptions.pop("no_repeat_ngram_size")
for key, value in list(decodeOptions.items()):
if value == "":
del decodeOptions[key]
# word_timestamps = decodeOptions.get("word_timestamps", False)
# condition_on_previous_text = decodeOptions.get("condition_on_previous_text", False)
# prepend_punctuations = decodeOptions.get("prepend_punctuations", None)
# append_punctuations = decodeOptions.get("append_punctuations", None)
# initial_prompt = decodeOptions.get("initial_prompt", None)
# best_of = decodeOptions.get("best_of", None)
# beam_size = decodeOptions.get("beam_size", None)
# patience = decodeOptions.get("patience", None)
# length_penalty = decodeOptions.get("length_penalty", None)
# suppress_tokens = decodeOptions.get("suppress_tokens", None)
# compression_ratio_threshold = decodeOptions.get("compression_ratio_threshold", None)
# logprob_threshold = decodeOptions.get("logprob_threshold", None)
vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode)
if diarization:
if diarization_speakers is not None and diarization_speakers < 1:
self.set_diarization(auth_token=self.app_config.auth_token, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers)
else:
self.set_diarization(auth_token=self.app_config.auth_token, num_speakers=diarization_speakers, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers)
else:
self.unset_diarization()
# Handle temperature_increment_on_fallback
if temperature is not None:
if temperature_increment_on_fallback is not None:
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
else:
temperature = [temperature]
decodeOptions["temperature"] = temperature
progress(0, desc="init audio sources")
if sourceInput == "urlData":
sources = self.__get_source(urlData, None, None)
elif sourceInput == "multipleFiles":
sources = self.__get_source(None, multipleFiles, None)
elif sourceInput == "microphoneData":
sources = self.__get_source(None, None, microphoneData)
if (len(sources) == 0):
raise Exception("init audio sources failed...")
try:
progress(0, desc="init whisper model")
whisperLang: TranslationLang = get_lang_from_whisper_name(whisperLangName)
whisperLangCode = whisperLang.whisper.code if whisperLang is not None and whisperLang.whisper is not None else None
selectedModel = whisperModelName if whisperModelName is not None else "base"
model = create_whisper_container(whisper_implementation=self.app_config.whisper_implementation,
model_name=selectedModel, compute_type=self.app_config.compute_type,
cache=self.model_cache, models=self.app_config.models["whisper"])
progress(0, desc="init translate model")
translationLang, translationModel = self.initTranslationModel(whisperLangName, whisperLang, decodeOptions)
progress(0, desc="init transcribe")
# Result
download = []
zip_file_lookup = {}
text = ""
vtt = ""
filterLogs = ""
# Write result
downloadDirectory = tempfile.mkdtemp()
source_index = 0
extra_tasks_count = 1 if translationLang is not None else 0
outputDirectory = self.output_dir if self.output_dir is not None else downloadDirectory
# Progress
total_duration = sum([source.get_audio_duration() for source in sources])
current_progress = 0
# A listener that will report progress to Gradio
root_progress_listener = self._create_progress_listener(progress)
sub_task_total = 1/(len(sources)+extra_tasks_count*len(sources))
# Execute whisper
for idx, source in enumerate(sources):
source_prefix = ""
source_audio_duration = source.get_audio_duration()
if (len(sources) > 1):
# Prefix (minimum 2 digits)
source_index += 1
source_prefix = str(source_index).zfill(2) + "_"
print("Transcribing ", source.source_path)
scaled_progress_listener = SubTaskProgressListener(root_progress_listener,
base_task_total=1,
sub_task_start=idx*1/len(sources),
sub_task_total=sub_task_total)
# Transcribe
result = self.transcribe_file(model, source.source_path, whisperLangCode, task, vadOptions, scaled_progress_listener, **decodeOptions)
filterLog = result.get("filterLog", None)
if filterLog:
filterLogs += source.get_full_name() + ":\n" + filterLog + "\n\n"
if translationModel is not None and whisperLang is None and result["language"] is not None and len(result["language"]) > 0:
whisperLang = get_lang_from_whisper_code(result["language"])
translationModel.whisperLang = whisperLang
short_name, suffix = source.get_short_name_suffix(max_length=self.app_config.input_max_file_name_length)
filePrefix = slugify(source_prefix + short_name, allow_unicode=True)
# Update progress
current_progress += source_audio_duration
source_download, source_text, source_vtt = self.write_result(result, whisperLang, translationModel, filePrefix + suffix.replace(".", "_"), outputDirectory, highlight_words, scaled_progress_listener)
if self.app_config.merge_subtitle_with_sources and self.app_config.output_dir is not None:
print("\nmerge subtitle(srt) with source file [" + source.source_name + "]\n")
outRsult = ""
try:
srt_path = source_download[0]
save_path = os.path.join(self.app_config.output_dir, filePrefix)
# save_without_ext, ext = os.path.splitext(save_path)
source_lang = "." + whisperLang.whisper.code if whisperLang is not None and whisperLang.whisper is not None else ""
translate_lang = "." + translationLang.nllb.code if translationLang is not None else ""
output_with_srt = save_path + source_lang + translate_lang + suffix
#ffmpeg -i "input.mp4" -i "input.srt" -c copy -c:s mov_text output.mp4
input_file = ffmpeg.input(source.source_path)
input_srt = ffmpeg.input(srt_path)
out = ffmpeg.output(input_file, input_srt, output_with_srt, vcodec='copy', acodec='copy', scodec='mov_text')
outRsult = out.run(overwrite_output=True)
except Exception as e:
print(traceback.format_exc())
print("Error merge subtitle with source file: \n" + source.source_path + ", \n" + str(e), outRsult)
elif self.app_config.save_downloaded_files and self.app_config.output_dir is not None and urlData:
print("Saving downloaded file [" + source.source_name + "]")
try:
save_path = os.path.join(self.app_config.output_dir, filePrefix)
shutil.copy(source.source_path, save_path + suffix)
except Exception as e:
print(traceback.format_exc())
print("Error saving downloaded file: \n" + source.source_path + ", \n" + str(e))
if len(sources) > 1:
# Add new line separators
if (len(source_text) > 0):
source_text += os.linesep + os.linesep
if (len(source_vtt) > 0):
source_vtt += os.linesep + os.linesep
# Append file name to source text too
source_text = source.get_full_name() + ":" + os.linesep + source_text
source_vtt = source.get_full_name() + ":" + os.linesep + source_vtt
# Add to result
download.extend(source_download)
text += source_text
vtt += source_vtt
if (len(sources) > 1):
# Zip files support at least 260 characters, but we'll play it safe and use 200
zipFilePrefix = slugify(source_prefix + source.get_short_name(max_length=200), allow_unicode=True)
# File names in ZIP file can be longer
for source_download_file in source_download:
# Get file postfix (after last -)
filePostfix = os.path.basename(source_download_file).split("-")[-1]
zip_file_name = zipFilePrefix + "-" + filePostfix
zip_file_lookup[source_download_file] = zip_file_name
# Create zip file from all sources
if len(sources) > 1:
downloadAllPath = os.path.join(downloadDirectory, "All_Output-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip")
with zipfile.ZipFile(downloadAllPath, 'w', zipfile.ZIP_DEFLATED) as zip:
for download_file in download:
# Get file name from lookup
zip_file_name = zip_file_lookup.get(download_file, os.path.basename(download_file))
zip.write(download_file, arcname=zip_file_name)
download.insert(0, downloadAllPath)
filterLogText = [gr.Text.update(visible=False)]
if filterLogs:
filterLogText = [gr.Text.update(visible=True, value=filterLogs)]
return [download, text, vtt] + filterLogText
finally:
# Cleanup source
if self.deleteUploadedFiles:
for source in sources:
print("Deleting temporary source file: " + source.source_path)
try:
os.remove(source.source_path)
except Exception as e:
print(traceback.format_exc())
print("Error deleting temporary source file: \n" + source.source_path + ", \n" + str(e))
except ExceededMaximumDuration as e:
return [], "[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s", "[ERROR]", ""
except Exception as e:
print(traceback.format_exc())
return [], "Error occurred during transcribe: " + str(e), traceback.format_exc(), ""
def transcribe_file(self, model: AbstractWhisperContainer, audio_path: str, languageCode: str, task: str = None,
vadOptions: VadOptions = VadOptions(),
progressListener: ProgressListener = None, **decodeOptions: dict):
initial_prompt = decodeOptions.pop('initial_prompt', None)
if progressListener is None:
# Default progress listener
progressListener = ProgressListener()
if ('task' in decodeOptions):
task = decodeOptions.pop('task')
initial_prompt_mode = vadOptions.vadInitialPromptMode
# Set default initial prompt mode
if (initial_prompt_mode is None):
initial_prompt_mode = VadInitialPromptMode.PREPREND_FIRST_SEGMENT
if (initial_prompt_mode == VadInitialPromptMode.PREPEND_ALL_SEGMENTS or
initial_prompt_mode == VadInitialPromptMode.PREPREND_FIRST_SEGMENT):
# Prepend initial prompt
prompt_strategy = PrependPromptStrategy(initial_prompt, initial_prompt_mode)
elif (vadOptions.vadInitialPromptMode == VadInitialPromptMode.JSON_PROMPT_MODE):
# Use a JSON format to specify the prompt for each segment
prompt_strategy = JsonPromptStrategy(initial_prompt)
else:
raise ValueError("Invalid vadInitialPromptMode: " + initial_prompt_mode)
# Callable for processing an audio file
whisperCallable = model.create_callback(languageCode, task, prompt_strategy=prompt_strategy, **decodeOptions)
# The results
if (vadOptions.vad == 'silero-vad'):
# Silero VAD where non-speech gaps are transcribed
process_gaps = self._create_silero_config(NonSpeechStrategy.CREATE_SEGMENT, vadOptions)
result = self.process_vad(audio_path, whisperCallable, self.vad_model, process_gaps, progressListener=progressListener)
elif (vadOptions.vad == 'silero-vad-skip-gaps'):
# Silero VAD where non-speech gaps are simply ignored
skip_gaps = self._create_silero_config(NonSpeechStrategy.SKIP, vadOptions)
result = self.process_vad(audio_path, whisperCallable, self.vad_model, skip_gaps, progressListener=progressListener)
elif (vadOptions.vad == 'silero-vad-expand-into-gaps'):
# Use Silero VAD where speech-segments are expanded into non-speech gaps
expand_gaps = self._create_silero_config(NonSpeechStrategy.EXPAND_SEGMENT, vadOptions)
result = self.process_vad(audio_path, whisperCallable, self.vad_model, expand_gaps, progressListener=progressListener)
elif (vadOptions.vad == 'periodic-vad'):
# Very simple VAD - mark every 5 minutes as speech. This makes it less likely that Whisper enters an infinite loop, but
# it may create a break in the middle of a sentence, causing some artifacts.
periodic_vad = VadPeriodicTranscription()
period_config = PeriodicTranscriptionConfig(periodic_duration=vadOptions.vadMaxMergeSize, max_prompt_window=vadOptions.vadPromptWindow)
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener)
else:
if (self._has_parallel_devices()):
# Use a simple period transcription instead, as we need to use the parallel context
periodic_vad = VadPeriodicTranscription()
period_config = PeriodicTranscriptionConfig(periodic_duration=math.inf, max_prompt_window=1)
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener)
else:
# Default VAD
result = whisperCallable.invoke(audio_path, 0, None, None, progress_listener=progressListener)
if self.whisperSegmentsFilters:
querySegmentsResult, filterLog = self.filterSegments(result["segments"])
result["segments"] = querySegmentsResult
if filterLog:
result["filterLog"] = filterLog
# Diarization
if self.diarization and self.diarization_kwargs:
print("Diarizing ", audio_path)
diarization_result = list(self.diarization.run(audio_path, **self.diarization_kwargs))
# Print result
print("Diarization result: ")
for entry in diarization_result:
print(f" start={entry.start:.1f}s stop={entry.end:.1f}s speaker_{entry.speaker}")
# Add speakers to result
result = self.diarization.mark_speakers(diarization_result, result)
return result
def filterSegments(self, querySegments: List[Dict[str, Any]]):
try:
if not self.whisperSegmentsFilters: return
filterIdx = 0
filterLog = []
querySegmentsResult = querySegments.copy()
for idx in range(len(querySegmentsResult),0,-1):
currentID = idx - 1
querySegment = querySegmentsResult[currentID]
for segmentsFilter in self.whisperSegmentsFilters:
isFilter: bool = True
for idx, strFilter in enumerate(segmentsFilter):
if not isFilter: break
if idx == 0:
filterCondition = strFilter
continue
isFilter = True
for subFilter in strFilter:
key: str = subFilter[0]
if key == "segment_last":
isFilter = querySegment.get(key, None)
if isFilter: break
continue
sign: str = subFilter[1]
threshold: float = subFilter[2]
if key == "durationLen":
value = querySegment["end"] - querySegment["start"]
elif key == "textLen":
value = len(querySegment["text"])
else:
value = querySegment[key]
if sign == "=" or sign == "==":
isFilter = value == threshold
elif sign == ">":
isFilter = value > threshold
elif sign == ">=":
isFilter = value >= threshold
elif sign == "<":
isFilter = value < threshold
elif sign == "<=":
isFilter = value <= threshold
else: isFilter = False
if isFilter: break
if isFilter: break
if isFilter:
filterLog.append(f"\t{querySegment}\n")
del querySegmentsResult[currentID]
if filterLog:
filterLog = [f"filter{idx:03d} [{filterCondition}]:\n{log}" for idx, log in enumerate(reversed(filterLog))]
return querySegmentsResult, "\n".join(filterLog)
except Exception as e:
print(traceback.format_exc())
print("Error filter segments: " + str(e))
def _create_progress_listener(self, progress: gr.Progress):
if (progress is None):
# Dummy progress listener
return ProgressListener()
class ForwardingProgressListener(ProgressListener):
def __init__(self, progress: gr.Progress):
self.progress = progress
def on_progress(self, current: Union[int, float], total: Union[int, float], desc: str = None):
# From 0 to 1
self.progress(current / total, desc=desc)
def on_finished(self, desc: str = None):
self.progress(1, desc=desc)
return ForwardingProgressListener(progress)
def process_vad(self, audio_path, whisperCallable, vadModel: AbstractTranscription, vadConfig: TranscriptionConfig,
progressListener: ProgressListener = None):
if (not self._has_parallel_devices()):
# No parallel devices, so just run the VAD and Whisper in sequence
return vadModel.transcribe(audio_path, whisperCallable, vadConfig, progressListener=progressListener)
gpu_devices = self.parallel_device_list
if (gpu_devices is None or len(gpu_devices) == 0):
# No GPU devices specified, pass the current environment variable to the first GPU process. This may be NULL.
gpu_devices = [os.environ.get("CUDA_VISIBLE_DEVICES", None)]
# Create parallel context if needed
if (self.gpu_parallel_context is None):
# Create a context wih processes and automatically clear the pool after 1 hour of inactivity
self.gpu_parallel_context = ParallelContext(num_processes=len(gpu_devices), auto_cleanup_timeout_seconds=self.vad_process_timeout)
# We also need a CPU context for the VAD
if (self.cpu_parallel_context is None):
self.cpu_parallel_context = ParallelContext(num_processes=self.vad_cpu_cores, auto_cleanup_timeout_seconds=self.vad_process_timeout)
parallel_vad = ParallelTranscription()
return parallel_vad.transcribe_parallel(transcription=vadModel, audio=audio_path, whisperCallable=whisperCallable,
config=vadConfig, cpu_device_count=self.vad_cpu_cores, gpu_devices=gpu_devices,
cpu_parallel_context=self.cpu_parallel_context, gpu_parallel_context=self.gpu_parallel_context,
progress_listener=progressListener)
def _has_parallel_devices(self):
return (self.parallel_device_list is not None and len(self.parallel_device_list) > 0) or self.vad_cpu_cores > 1
def _concat_prompt(self, prompt1, prompt2):
if (prompt1 is None):
return prompt2
elif (prompt2 is None):
return prompt1
else:
return prompt1 + " " + prompt2
def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadOptions: VadOptions):
# Use Silero VAD
if (self.vad_model is None):
self.vad_model = VadSileroTranscription() #vad_model is snakers4/silero-vad
config = TranscriptionConfig(non_speech_strategy = non_speech_strategy,
max_silent_period=vadOptions.vadMergeWindow, max_merge_size=vadOptions.vadMaxMergeSize,
segment_padding_left=vadOptions.vadPadding, segment_padding_right=vadOptions.vadPadding,
max_prompt_window=vadOptions.vadPromptWindow)
return config
def write_result(self, result: dict, whisperLang: TranslationLang, translationModel: TranslationModel, source_name: str, output_dir: str, highlight_words: bool = False, progressListener: ProgressListener = None):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
text = result["text"]
segments = result["segments"]
language = result["language"]
languageMaxLineWidth = 80 #Use east_asian_width to automatically determine the Character Width of the string, replacing the __get_max_line_width function. 80 latin characters should fit on a 1080p/720p screen
if translationModel is not None and translationModel.translationLang is not None:
try:
segments_progress_listener = SubTaskProgressListener(progressListener,
base_task_total=progressListener.sub_task_total,
sub_task_start=1,
sub_task_total=1)
pbar = tqdm.tqdm(total=len(segments))
perf_start_time = time.perf_counter()
translationModel.load_model()
for idx, segment in enumerate(segments):
seg_text = segment["text"]
segment["original"] = seg_text
segment["text"] = translationModel.translation(seg_text)
pbar.update(1)
segments_progress_listener.on_progress(idx+1, len(segments), desc=f"Process segments: {idx}/{len(segments)}")
translationModel.release_vram()
perf_end_time = time.perf_counter()
# Call the finished callback
if segments_progress_listener is not None:
segments_progress_listener.on_finished(desc=f"Process segments: {idx}/{len(segments)}")
print("\n\nprocess segments took {} seconds.\n\n".format(perf_end_time - perf_start_time))
except Exception as e:
print(traceback.format_exc())
print("Error process segments: " + str(e))
print("Max line Character Width " + str(languageMaxLineWidth) + " for language:" + language)
vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth, highlight_words=highlight_words)
srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth, highlight_words=highlight_words)
json_result = json.dumps(result, indent=4, ensure_ascii=False)
srt_original = None
srt_bilingual = None
if translationModel is not None and translationModel.translationLang is not None:
srt_original = self.__get_subs(result["segments"], "srt_original", languageMaxLineWidth, highlight_words=highlight_words)
srt_bilingual = self.__get_subs(result["segments"], "srt_bilingual", languageMaxLineWidth, highlight_words=highlight_words)
whisperLangZho: bool = whisperLang is not None and whisperLang.nllb is not None and whisperLang.nllb.code in ["zho_Hant", "zho_Hans", "yue_Hant"]
translationZho: bool = translationModel is not None and translationModel.translationLang is not None and translationModel.translationLang.nllb is not None and translationModel.translationLang.nllb.code in ["zho_Hant", "zho_Hans", "yue_Hant"]
if whisperLangZho or translationZho:
locale = None
if whisperLangZho:
if whisperLang.nllb.code == "zho_Hant":
locale = "zh-tw"
elif whisperLang.nllb.code == "zho_Hans":
locale = "zh-cn"
elif whisperLang.nllb.code == "yue_Hant":
locale = "zh-hk"
if translationZho:
if translationModel.translationLang.nllb.code == "zho_Hant":
locale = "zh-tw"
elif translationModel.translationLang.nllb.code == "zho_Hans":
locale = "zh-cn"
elif translationModel.translationLang.nllb.code == "yue_Hant":
locale = "zh-hk"
if locale is not None:
vtt = zhconv.convert(vtt, locale)
srt = zhconv.convert(srt, locale)
text = zhconv.convert(text, locale)
json_result = zhconv.convert(json_result, locale)
if translationModel is not None and translationModel.translationLang is not None:
if srt_original is not None and len(srt_original) > 0:
srt_original = zhconv.convert(srt_original, locale)
if srt_bilingual is not None and len(srt_bilingual) > 0:
srt_bilingual = zhconv.convert(srt_bilingual, locale)
output_files = []
output_files.append(self.__create_file(srt, output_dir, source_name + "-subs.srt"));
output_files.append(self.__create_file(vtt, output_dir, source_name + "-subs.vtt"));
output_files.append(self.__create_file(text, output_dir, source_name + "-transcript.txt"));
output_files.append(self.__create_file(json_result, output_dir, source_name + "-result.json"));
if srt_original is not None and len(srt_original) > 0:
output_files.append(self.__create_file(srt_original, output_dir, source_name + "-original.srt"));
if srt_bilingual is not None and len(srt_bilingual) > 0:
output_files.append(self.__create_file(srt_bilingual, output_dir, source_name + "-bilingual.srt"));
return output_files, text, srt_bilingual if srt_bilingual is not None and len(srt_bilingual) > 0 else vtt
def clear_cache(self):
self.model_cache.clear()
self.vad_model = None
def __get_source(self, urlData, multipleFiles, microphoneData):
return get_audio_source_collection(urlData, multipleFiles, microphoneData, self.inputAudioMaxDuration)
def __get_subs(self, segments: Iterator[dict], format: str, maxLineWidth: int, highlight_words: bool = False) -> str:
segmentStream = StringIO()
if format == 'vtt':
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words)
elif format == 'srt':
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words)
elif format == 'srt_original':
write_srt_original(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words)
elif format == 'srt_bilingual':
write_srt_original(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words, bilingual=True)
else:
raise Exception("Unknown format " + format)
segmentStream.seek(0)
return segmentStream.read()
def __create_file(self, text: str, directory: str, fileName: str) -> str:
# Write the text to a file
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file:
file.write(text)
return file.name
def close(self):
print("Closing parallel contexts")
self.clear_cache()
if (self.gpu_parallel_context is not None):
self.gpu_parallel_context.close()
if (self.cpu_parallel_context is not None):
self.cpu_parallel_context.close()
# Cleanup diarization
if (self.diarization is not None):
self.diarization.cleanup()
self.diarization = None
# Entry function for the simple or full tab, Queue mode disabled: progress bars will not be shown
def translation_entry(self, data: dict): return self.translation_entry_progress(data)
# Entry function for the simple or full tab with progress, Progress tracking requires queuing to be enabled
def translation_entry_progress(self, data: dict, progress=gr.Progress()):
dataDict = {}
for key, value in data.items():
dataDict.update({key.elem_id: value})
return self.translation_webui(dataDict, progress=progress)
def translation_webui(self, dataDict: dict, progress: gr.Progress = None):
try:
inputText: str = dataDict.pop("inputText")
inputLangName: str = dataDict.pop("inputLangName")
inputLang: TranslationLang = get_lang_from_whisper_name(inputLangName)
progress(0, desc="init translate model")
translationLang, translationModel = self.initTranslationModel(inputLangName, inputLang, dataDict)
translationEnbaleBilingual: bool = dataDict.pop("translationEnbaleBilingual")
translationDetectLineBreaks: bool = dataDict.pop("translationDetectLineBreaks")
result = []
if translationModel and translationModel.translationLang:
try:
inputTexts = inputText.split("\n")
progress(0, desc="Translation starting...")
perf_start_time = time.perf_counter()
translationModel.load_model()
def doTranslation(text: str):
if translationEnbaleBilingual:
result.append(text)
result.append(translationModel.translation(text))
temporaryText = ""
for idx, text in enumerate(tqdm.tqdm(inputTexts)):
if not text or re.match("""^[\u2000-\u206F\u2E00-\u2E7F\\'!"#$%&()*+,\-.\/:;<=>?@\[\]^_`{|}~\d ]+$""", text.strip()):
if temporaryText:
doTranslation(temporaryText)
temporaryText = ""
result.append(text)
else:
if translationDetectLineBreaks and ((not text.rstrip().endswith(".") and not text.rstrip().endswith("。")) or temporaryText):
if temporaryText:
temporaryText = temporaryText.rstrip() + " "
temporaryText += text
continue
doTranslation(text)
progress((idx+1)/len(inputTexts), desc=f"Process inputText: {idx+1}/{len(inputTexts)}")
if temporaryText:
doTranslation(temporaryText)
translationModel.release_vram()
perf_end_time = time.perf_counter()
# Call the finished callback
progress(1, desc=f"Process inputText: {idx+1}/{len(inputTexts)}")
print("\n\nprocess inputText took {} seconds.\n\n".format(perf_end_time - perf_start_time))
except Exception as e:
print(traceback.format_exc())
print("Error process inputText: " + str(e))
resultStr = "\n".join(result)
translationZho: bool = translationModel and translationModel.translationLang and translationModel.translationLang.nllb and translationModel.translationLang.nllb.code in ["zho_Hant", "zho_Hans", "yue_Hant"]
if translationZho:
if translationModel.translationLang.nllb.code == "zho_Hant":
locale = "zh-tw"
elif translationModel.translationLang.nllb.code == "zho_Hans":
locale = "zh-cn"
elif translationModel.translationLang.nllb.code == "yue_Hant":
locale = "zh-hk"
resultStr = zhconv.convert(resultStr, locale)
return resultStr
except Exception as e:
print(traceback.format_exc())
return "Error occurred during transcribe: " + str(e) + "\n\n" + traceback.format_exc()
def initTranslationModel(self, inputLangName: str, inputLang: TranslationLang, dataDict: dict):
translateInput: str = dataDict.pop("translateInput")
m2m100ModelName: str = dataDict.pop("m2m100ModelName")
m2m100LangName: str = dataDict.pop("m2m100LangName")
nllbModelName: str = dataDict.pop("nllbModelName")
nllbLangName: str = dataDict.pop("nllbLangName")
mt5ModelName: str = dataDict.pop("mt5ModelName")
mt5LangName: str = dataDict.pop("mt5LangName")
ALMAModelName: str = dataDict.pop("ALMAModelName")
ALMALangName: str = dataDict.pop("ALMALangName")
madlad400ModelName: str = dataDict.pop("madlad400ModelName")
madlad400LangName: str = dataDict.pop("madlad400LangName")
seamlessModelName: str = dataDict.pop("seamlessModelName")
seamlessLangName: str = dataDict.pop("seamlessLangName")
translationBatchSize: int = dataDict.pop("translationBatchSize")
translationNoRepeatNgramSize: int = dataDict.pop("translationNoRepeatNgramSize")
translationNumBeams: int = dataDict.pop("translationNumBeams")
translationTorchDtypeFloat16: bool = dataDict.pop("translationTorchDtypeFloat16")
translationUsingBitsandbytes: str = dataDict.pop("translationUsingBitsandbytes")
translationLang = None
translationModel = None
if translateInput == "m2m100" and m2m100LangName is not None and len(m2m100LangName) > 0:
selectedModelName = m2m100ModelName if m2m100ModelName is not None and len(m2m100ModelName) > 0 else "m2m100_418M/facebook"
selectedModel = next((modelConfig for modelConfig in self.app_config.models["m2m100"] if modelConfig.name == selectedModelName), None)
translationLang = get_lang_from_m2m100_name(m2m100LangName)
elif translateInput == "nllb" and nllbLangName is not None and len(nllbLangName) > 0:
selectedModelName = nllbModelName if nllbModelName is not None and len(nllbModelName) > 0 else "nllb-200-distilled-600M/facebook"
selectedModel = next((modelConfig for modelConfig in self.app_config.models["nllb"] if modelConfig.name == selectedModelName), None)
translationLang = get_lang_from_nllb_name(nllbLangName)
elif translateInput == "mt5" and mt5LangName is not None and len(mt5LangName) > 0:
selectedModelName = mt5ModelName if mt5ModelName is not None and len(mt5ModelName) > 0 else "mt5-zh-ja-en-trimmed/K024"
selectedModel = next((modelConfig for modelConfig in self.app_config.models["mt5"] if modelConfig.name == selectedModelName), None)
translationLang = get_lang_from_m2m100_name(mt5LangName)
elif translateInput == "ALMA" and ALMALangName is not None and len(ALMALangName) > 0:
selectedModelName = ALMAModelName if ALMAModelName is not None and len(ALMAModelName) > 0 else "ALMA-7B-ct2:int8_float16/avan"
selectedModel = next((modelConfig for modelConfig in self.app_config.models["ALMA"] if modelConfig.name == selectedModelName), None)
translationLang = get_lang_from_m2m100_name(ALMALangName)
elif translateInput == "madlad400" and madlad400LangName is not None and len(madlad400LangName) > 0:
selectedModelName = madlad400ModelName if madlad400ModelName is not None and len(madlad400ModelName) > 0 else "madlad400-3b-mt-ct2-int8_float16/SoybeanMilk"
selectedModel = next((modelConfig for modelConfig in self.app_config.models["madlad400"] if modelConfig.name == selectedModelName), None)
translationLang = get_lang_from_m2m100_name(madlad400LangName)
elif translateInput == "seamless" and seamlessLangName is not None and len(seamlessLangName) > 0:
selectedModelName = seamlessModelName if seamlessModelName is not None and len(seamlessModelName) > 0 else "seamless-m4t-v2-large/facebook"
selectedModel = next((modelConfig for modelConfig in self.app_config.models["seamless"] if modelConfig.name == selectedModelName), None)
translationLang = get_lang_from_seamlessT_Tx_name(seamlessLangName)
if translationLang is not None:
translationModel = TranslationModel(modelConfig=selectedModel, whisperLang=inputLang, translationLang=translationLang, batchSize=translationBatchSize, noRepeatNgramSize=translationNoRepeatNgramSize, numBeams=translationNumBeams, torchDtypeFloat16=translationTorchDtypeFloat16, usingBitsandbytes=translationUsingBitsandbytes)
return translationLang, translationModel
def create_ui(app_config: ApplicationConfig):
translateModelMd: str = None
optionsMd: str = None
readmeMd: str = None
try:
translateModelPath = pathlib.Path("docs/translateModel.md")
with open(translateModelPath, "r", encoding="utf-8") as translateModelFile:
translateModelMd = translateModelFile.read()
except Exception as e:
print("Error occurred during read translateModel.md file: ", str(e))
try:
optionsPath = pathlib.Path("docs/options.md")
with open(optionsPath, "r", encoding="utf-8") as optionsFile:
optionsMd = optionsFile.read()
except Exception as e:
print("Error occurred during read options.md file: ", str(e))
try:
with open("README.md", "r", encoding="utf-8") as readmeFile:
readmeMd = readmeFile.read()
except Exception as e:
print("Error occurred during read options.md file: ", str(e))
ui = WhisperTranscriber(app_config.input_audio_max_duration, app_config.vad_process_timeout, app_config.vad_cpu_cores,
app_config.delete_uploaded_files, app_config.output_dir, app_config)
# Specify a list of devices to use for parallel processing
ui.set_parallel_devices(app_config.vad_parallel_devices)
ui.set_auto_parallel(app_config.auto_parallel)
is_whisper = False
if app_config.whisper_implementation == "whisper":
implementation_name = "Whisper"
is_whisper = True
elif app_config.whisper_implementation in ["faster-whisper", "faster_whisper"]:
implementation_name = "Faster Whisper"
else:
# Try to convert from camel-case to title-case
implementation_name = app_config.whisper_implementation.title().replace("_", " ").replace("-", " ")
uiDescription = implementation_name + " is a general-purpose speech recognition model. It is trained on a large dataset of diverse "
uiDescription += " audio and is also a multi-task model that can perform multilingual speech recognition "
uiDescription += " as well as speech translation and language identification. "
uiDescription += "\n\n\n\nFor longer audio files (>10 minutes) not in English, it is recommended that you select Silero VAD (Voice Activity Detector) in the VAD option."
# Recommend faster-whisper
if is_whisper:
uiDescription += "\n\n\n\nFor faster inference on GPU, try [faster-whisper](https://huggingface.co/spaces/aadnk/faster-whisper-webui)."
if app_config.input_audio_max_duration > 0:
uiDescription += "\n\n" + "Max audio file length: " + str(app_config.input_audio_max_duration) + " s"
uiArticle = "Read the [documentation here](https://gitlab.com/aadnk/whisper-webui/-/blob/main/docs/options.md)."
whisper_models = app_config.get_model_names("whisper")
nllb_models = app_config.get_model_names("nllb")
m2m100_models = app_config.get_model_names("m2m100")
mt5_models = app_config.get_model_names("mt5")
ALMA_models = app_config.get_model_names("ALMA")
madlad400_models = app_config.get_model_names("madlad400")
seamless_models = app_config.get_model_names("seamless")
if not torch.cuda.is_available(): # Loading only quantized or models with medium-low parameters in an environment without GPU support.
nllb_models = list(filter(lambda nllb: any(name in nllb for name in ["-600M", "-1.3B", "-3.3B-ct2"]), nllb_models))
m2m100_models = list(filter(lambda m2m100: "12B" not in m2m100, m2m100_models))
ALMA_models = list(filter(lambda alma: "GGUF" in alma or "ct2" in alma, ALMA_models))
madlad400_models = list(filter(lambda madlad400: "ct2" in madlad400, madlad400_models))
common_whisper_inputs = lambda : {
gr.Dropdown(label="Whisper - Model (for audio)", choices=whisper_models, value=app_config.default_model_name, elem_id="whisperModelName"),
gr.Dropdown(label="Whisper - Language", choices=sorted(get_lang_whisper_names()), value=app_config.language, elem_id="whisperLangName"),
}
common_m2m100_inputs = lambda : {
gr.Dropdown(label="M2M100 - Model (for translate)", choices=m2m100_models, elem_id="m2m100ModelName"),
gr.Dropdown(label="M2M100 - Language", choices=sorted(get_lang_m2m100_names()), elem_id="m2m100LangName"),
}
common_nllb_inputs = lambda : {
gr.Dropdown(label="NLLB - Model (for translate)", choices=nllb_models, elem_id="nllbModelName"),
gr.Dropdown(label="NLLB - Language", choices=sorted(get_lang_nllb_names()), elem_id="nllbLangName"),
}
common_mt5_inputs = lambda : {
gr.Dropdown(label="MT5 - Model (for translate)", choices=mt5_models, elem_id="mt5ModelName"),
gr.Dropdown(label="MT5 - Language", choices=sorted(get_lang_m2m100_names(["en", "ja", "zh"])), elem_id="mt5LangName"),
}
common_ALMA_inputs = lambda : {
gr.Dropdown(label="ALMA - Model (for translate)", choices=ALMA_models, elem_id="ALMAModelName"),
gr.Dropdown(label="ALMA - Language", choices=sort_lang_by_whisper_codes(["en", "de", "cs", "is", "ru", "zh", "ja"]), elem_id="ALMALangName"),
}
common_madlad400_inputs = lambda : {
gr.Dropdown(label="madlad400 - Model (for translate)", choices=madlad400_models, elem_id="madlad400ModelName"),
gr.Dropdown(label="madlad400 - Language", choices=sorted(get_lang_m2m100_names()), elem_id="madlad400LangName"),
}
common_seamless_inputs = lambda : {
gr.Dropdown(label="seamless - Model (for translate)", choices=seamless_models, elem_id="seamlessModelName"),
gr.Dropdown(label="seamless - Language", choices=sorted(get_lang_seamlessT_Tx_names()), elem_id="seamlessLangName"),
}
common_translation_inputs = lambda : {
gr.Number(label="Translation - Batch Size", precision=0, value=app_config.translation_batch_size, elem_id="translationBatchSize"),
gr.Number(label="Translation - No Repeat Ngram Size", precision=0, value=app_config.translation_no_repeat_ngram_size, elem_id="translationNoRepeatNgramSize"),
gr.Number(label="Translation - Num Beams", precision=0, value=app_config.translation_num_beams, elem_id="translationNumBeams"),
gr.Checkbox(label="Translation - Torch Dtype float16", visible=torch.cuda.is_available(), value=app_config.translation_torch_dtype_float16, info="Load the float32 translation model with float16 when the system supports GPU (reducing VRAM usage, not applicable to models that have already been quantized, such as Ctranslate2, GPTQ, GGUF)", elem_id="translationTorchDtypeFloat16"),
gr.Radio(label="Translation - Using Bitsandbytes", visible=torch.cuda.is_available(), choices=[None, "int8", "int4"], value=app_config.translation_using_bitsandbytes, info="Load the float32 translation model into mixed-8bit or 4bit precision quantized model when the system supports GPU (reducing VRAM usage, not applicable to models that have already been quantized, such as Ctranslate2, GPTQ, GGUF)", elem_id="translationUsingBitsandbytes"),
}
common_vad_inputs = lambda : {
gr.Dropdown(choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], value=app_config.default_vad, label="VAD", elem_id="vad"),
gr.Number(label="VAD - Merge Window (s)", precision=0, value=app_config.vad_merge_window, elem_id="vadMergeWindow"),
gr.Number(label="VAD - Max Merge Size (s)", precision=0, value=app_config.vad_max_merge_size, elem_id="vadMaxMergeSize"),
gr.Number(label="VAD - Process Timeout (s)", precision=0, value=app_config.vad_process_timeout, elem_id="vadPocessTimeout"),
}
common_word_timestamps_inputs = lambda : {
gr.Checkbox(label="Word Timestamps", value=app_config.word_timestamps, elem_id="word_timestamps"),
gr.Checkbox(label="Word Timestamps - Highlight Words", value=app_config.highlight_words, elem_id="highlight_words"),
}
common_segments_filter_inputs = lambda : {
gr.Checkbox(label="Whisper Segments Filter", value=app_config.whisper_segments_filter, elem_id="whisperSegmentsFilter") if idx == 0 else
gr.Text(label=f"Filter {idx}", value=filterStr, elem_id=f"whisperSegmentsFilter{idx}") for idx, filterStr in enumerate([""] + app_config.whisper_segments_filters)
}
has_diarization_libs = Diarization.has_libraries()
if not has_diarization_libs:
print("Diarization libraries not found - disabling diarization")
app_config.diarization = False
common_diarization_inputs = lambda : {
gr.Checkbox(label="Diarization", value=app_config.diarization, interactive=has_diarization_libs, elem_id="diarization"),
gr.Number(label="Diarization - Speakers", precision=0, value=app_config.diarization_speakers, interactive=has_diarization_libs, elem_id="diarization_speakers"),
gr.Number(label="Diarization - Min Speakers", precision=0, value=app_config.diarization_min_speakers, interactive=has_diarization_libs, elem_id="diarization_min_speakers"),
gr.Number(label="Diarization - Max Speakers", precision=0, value=app_config.diarization_max_speakers, interactive=has_diarization_libs, elem_id="diarization_max_speakers")
}
common_output = lambda : [
gr.File(label="Download", height=200, elem_id="outputDownload"),
gr.Text(label="Transcription", autoscroll=False, show_copy_button=True, interactive=True, elem_id="outputTranscription", elem_classes="scroll-show"),
gr.Text(label="Segments", autoscroll=False, show_copy_button=True, interactive=True, elem_id="outputSegments", elem_classes="scroll-show"),
gr.Text(label="Filtered segment items", autoscroll=False, visible=False, show_copy_button=True, interactive=True, elem_id="outputFiltered", elem_classes="scroll-show"),
]
css = """
.scroll-show textarea {
overflow-y: auto !important;
}
.scroll-show textarea::-webkit-scrollbar {
all: initial !important;
background: #f1f1f1 !important;
}
.scroll-show textarea::-webkit-scrollbar-thumb {
all: initial !important;
background: #a8a8a8 !important;
}
"""
is_queue_mode = app_config.queue_concurrency_count is not None and app_config.queue_concurrency_count > 0
def create_transcribe(uiDescription: str, isQueueMode: bool, isFull: bool = False):
with gr.Blocks() as transcribe:
translateInput = gr.State(value="m2m100", elem_id = "translateInput")
sourceInput = gr.State(value="urlData", elem_id = "sourceInput")
gr.Markdown(uiDescription)
with gr.Row():
with gr.Column():
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column():
with gr.Row():
inputDict = common_whisper_inputs()
with gr.Tab(label="M2M100") as m2m100Tab:
with gr.Row():
inputDict.update(common_m2m100_inputs())
with gr.Tab(label="NLLB") as nllbTab:
with gr.Row():
inputDict.update(common_nllb_inputs())
with gr.Tab(label="MT5") as mt5Tab:
with gr.Row():
inputDict.update(common_mt5_inputs())
with gr.Tab(label="ALMA") as almaTab:
with gr.Row():
inputDict.update(common_ALMA_inputs())
with gr.Tab(label="madlad400") as madlad400Tab:
with gr.Row():
inputDict.update(common_madlad400_inputs())
with gr.Tab(label="seamless") as seamlessTab:
with gr.Row():
inputDict.update(common_seamless_inputs())
m2m100Tab.select(fn=lambda: "m2m100", inputs = [], outputs= [translateInput] )
nllbTab.select(fn=lambda: "nllb", inputs = [], outputs= [translateInput] )
mt5Tab.select(fn=lambda: "mt5", inputs = [], outputs= [translateInput] )
almaTab.select(fn=lambda: "ALMA", inputs = [], outputs= [translateInput] )
madlad400Tab.select(fn=lambda: "madlad400", inputs = [], outputs= [translateInput] )
seamlessTab.select(fn=lambda: "seamless", inputs = [], outputs= [translateInput] )
with gr.Column():
with gr.Tab(label="URL") as UrlTab:
inputDict.update({gr.Text(label="URL (YouTube, etc.)", elem_id = "urlData")})
with gr.Tab(label="Upload") as UploadTab:
inputDict.update({gr.File(label="Upload Files", file_count="multiple", elem_id = "multipleFiles")})
with gr.Tab(label="Microphone") as MicTab:
inputDict.update({gr.Audio(source="microphone", type="filepath", label="Microphone Input", elem_id = "microphoneData")})
UrlTab.select(fn=lambda: "urlData", inputs = [], outputs= [sourceInput] )
UploadTab.select(fn=lambda: "multipleFiles", inputs = [], outputs= [sourceInput] )
MicTab.select(fn=lambda: "microphoneData", inputs = [], outputs= [sourceInput] )
inputDict.update({gr.Dropdown(choices=["transcribe", "translate"], label="Task", value=app_config.task, elem_id = "task")})
with gr.Accordion("VAD options", open=False):
inputDict.update(common_vad_inputs())
if isFull:
inputDict.update({
gr.Number(label="VAD - Padding (s)", precision=None, value=app_config.vad_padding, elem_id = "vadPadding"),
gr.Number(label="VAD - Prompt Window (s)", precision=None, value=app_config.vad_prompt_window, elem_id = "vadPromptWindow"),
gr.Dropdown(choices=VAD_INITIAL_PROMPT_MODE_VALUES, label="VAD - Initial Prompt Mode", value=app_config.vad_initial_prompt_mode, elem_id = "vadInitialPromptMode")})
with gr.Accordion("Word Timestamps options", open=False):
inputDict.update(common_word_timestamps_inputs())
if isFull:
inputDict.update({
gr.Text(label="Word Timestamps - Prepend Punctuations", value=app_config.prepend_punctuations, elem_id = "prepend_punctuations"),
gr.Text(label="Word Timestamps - Append Punctuations", value=app_config.append_punctuations, elem_id = "append_punctuations")})
if isFull:
with gr.Accordion("Whisper Advanced options", open=False):
inputDict.update({
gr.TextArea(label="Initial Prompt", elem_id = "initial_prompt"),
gr.Number(label="Temperature", value=app_config.temperature, elem_id = "temperature"),
gr.Number(label="Best Of - Non-zero temperature", value=app_config.best_of, precision=0, elem_id = "best_of"),
gr.Number(label="Beam Size - Zero temperature", value=app_config.beam_size, precision=0, elem_id = "beam_size"),
gr.Number(label="Patience - Zero temperature", value=app_config.patience, elem_id = "patience"),
gr.Number(label="Length Penalty - Any temperature", value=lambda : None if app_config.length_penalty is None else app_config.length_penalty, elem_id = "length_penalty"),
gr.Text(label="Suppress Tokens - Comma-separated list of token IDs", value=app_config.suppress_tokens, elem_id = "suppress_tokens"),
gr.Checkbox(label="Condition on previous text", value=app_config.condition_on_previous_text, elem_id = "condition_on_previous_text"),
gr.Checkbox(label="FP16", value=app_config.fp16, elem_id = "fp16"),
gr.Number(label="Temperature increment on fallback", value=app_config.temperature_increment_on_fallback, elem_id = "temperature_increment_on_fallback"),
gr.Number(label="Compression ratio threshold", value=app_config.compression_ratio_threshold, elem_id = "compression_ratio_threshold"),
gr.Number(label="Logprob threshold", value=app_config.logprob_threshold, elem_id = "logprob_threshold"),
gr.Number(label="No speech threshold", value=app_config.no_speech_threshold, elem_id = "no_speech_threshold"),
})
if app_config.whisper_implementation == "faster-whisper":
inputDict.update({
gr.Number(label="Repetition Penalty", value=app_config.repetition_penalty, elem_id = "repetition_penalty"),
gr.Number(label="No Repeat Ngram Size", value=app_config.no_repeat_ngram_size, precision=0, elem_id = "no_repeat_ngram_size")
})
with gr.Accordion("Whisper Segments Filter options", open=False):
inputDict.update(common_segments_filter_inputs())
with gr.Accordion("Diarization options", open=False):
inputDict.update(common_diarization_inputs())
with gr.Accordion("Translation options", open=False):
inputDict.update(common_translation_inputs())
with gr.Column():
outputs = common_output()
gr.Markdown(uiArticle)
if optionsMd is not None:
with gr.Accordion("docs/options.md", open=False):
gr.Markdown(optionsMd)
if translateModelMd is not None:
with gr.Accordion("docs/translateModel.md", open=False):
gr.Markdown(translateModelMd)
if readmeMd is not None:
with gr.Accordion("README.md", open=False):
gr.Markdown(readmeMd)
inputDict.update({translateInput, sourceInput})
submitBtn.click(fn=ui.transcribe_entry_progress if isQueueMode else ui.transcribe_entry,
inputs=inputDict, outputs=outputs)
return transcribe
def create_translation(isQueueMode: bool):
with gr.Blocks() as translation:
translateInput = gr.State(value="m2m100", elem_id = "translateInput")
with gr.Row():
with gr.Column():
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column():
with gr.Tab(label="M2M100") as m2m100Tab:
with gr.Row():
inputDict = common_m2m100_inputs()
with gr.Tab(label="NLLB") as nllbTab:
with gr.Row():
inputDict.update(common_nllb_inputs())
with gr.Tab(label="MT5") as mt5Tab:
with gr.Row():
inputDict.update(common_mt5_inputs())
with gr.Tab(label="ALMA") as almaTab:
with gr.Row():
inputDict.update(common_ALMA_inputs())
with gr.Tab(label="madlad400") as madlad400Tab:
with gr.Row():
inputDict.update(common_madlad400_inputs())
with gr.Tab(label="seamless") as seamlessTab:
with gr.Row():
inputDict.update(common_seamless_inputs())
m2m100Tab.select(fn=lambda: "m2m100", inputs = [], outputs= [translateInput] )
nllbTab.select(fn=lambda: "nllb", inputs = [], outputs= [translateInput] )
mt5Tab.select(fn=lambda: "mt5", inputs = [], outputs= [translateInput] )
almaTab.select(fn=lambda: "ALMA", inputs = [], outputs= [translateInput] )
madlad400Tab.select(fn=lambda: "madlad400", inputs = [], outputs= [translateInput] )
seamlessTab.select(fn=lambda: "seamless", inputs = [], outputs= [translateInput] )
with gr.Column():
inputDict.update({
gr.Dropdown(label="Input - Language", choices=sorted(get_lang_whisper_names()), value=app_config.language, elem_id="inputLangName"),
gr.Text(lines=5, label="Input - Text", elem_id="inputText", elem_classes="scroll-show"),
})
with gr.Column():
with gr.Accordion("Translation options", open=False):
inputDict.update(common_translation_inputs())
inputDict.update({ gr.Checkbox(label="Translation - Enbale bilingual", value=True, info="Determines whether to enable bilingual translation results", elem_id="translationEnbaleBilingual"),
gr.Checkbox(label="Translation - Detect line breaks", value=False, info="Determines whether to enable detecting line breaks in the text. If enabled, it will concatenate lines before translation", elem_id="translationDetectLineBreaks"),})
with gr.Column():
outputs = [gr.Text(label="Translation Text", autoscroll=False, show_copy_button=True, interactive=True, elem_id="outputTranslationText", elem_classes="scroll-show"),]
if translateModelMd is not None:
with gr.Accordion("docs/translateModel.md", open=False):
gr.Markdown(translateModelMd)
inputDict.update({translateInput})
submitBtn.click(fn=ui.translation_entry_progress if isQueueMode else ui.translation_entry,
inputs=inputDict, outputs=outputs)
return translation
simpleTranscribe = create_transcribe(uiDescription, is_queue_mode)
fullDescription = uiDescription + "\n\n\n\n" + "Be careful when changing some of the options in the full interface - this can cause the model to crash."
fullTranscribe = create_transcribe(fullDescription, is_queue_mode, True)
uiTranslation = create_translation(is_queue_mode)
demo = gr.TabbedInterface([simpleTranscribe, fullTranscribe, uiTranslation], tab_names=["Simple", "Full", "Translation"], css=css)
# Queue up the demo
if is_queue_mode:
demo.queue(concurrency_count=app_config.queue_concurrency_count)
print("Queue mode enabled (concurrency count: " + str(app_config.queue_concurrency_count) + ")")
else:
print("Queue mode disabled - progress bars will not be shown.")
demo.launch(inbrowser=app_config.autolaunch, share=app_config.share, server_name=app_config.server_name, server_port=app_config.server_port)
# Clean up
ui.close()
if __name__ == '__main__':
default_app_config = ApplicationConfig.create_default()
whisper_models = default_app_config.get_model_names("whisper")
# Environment variable overrides
default_whisper_implementation = os.environ.get("WHISPER_IMPLEMENTATION", default_app_config.whisper_implementation)
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--input_audio_max_duration", type=int, default=default_app_config.input_audio_max_duration, \
help="Maximum audio file length in seconds, or -1 for no limit.") # 600
parser.add_argument("--share", type=bool, default=default_app_config.share, \
help="True to share the app on HuggingFace.") # False
parser.add_argument("--server_name", type=str, default=default_app_config.server_name, \
help="The host or IP to bind to. If None, bind to localhost.") # None
parser.add_argument("--server_port", type=int, default=default_app_config.server_port, \
help="The port to bind to.") # 7860
parser.add_argument("--queue_concurrency_count", type=int, default=default_app_config.queue_concurrency_count, \
help="The number of concurrent requests to process.") # 1
parser.add_argument("--default_model_name", type=str, choices=whisper_models, default=default_app_config.default_model_name, \
help="The default model name.") # medium
parser.add_argument("--default_vad", type=str, default=default_app_config.default_vad, \
help="The default VAD.") # silero-vad
parser.add_argument("--vad_initial_prompt_mode", type=str, default=default_app_config.vad_initial_prompt_mode, choices=VAD_INITIAL_PROMPT_MODE_VALUES, \
help="Whether or not to prepend the initial prompt to each VAD segment (prepend_all_segments), or just the first segment (prepend_first_segment)") # prepend_first_segment
parser.add_argument("--vad_parallel_devices", type=str, default=default_app_config.vad_parallel_devices, \
help="A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.") # ""
parser.add_argument("--vad_cpu_cores", type=int, default=default_app_config.vad_cpu_cores, \
help="The number of CPU cores to use for VAD pre-processing.") # 1
parser.add_argument("--vad_process_timeout", type=float, default=default_app_config.vad_process_timeout, \
help="The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.") # 1800
parser.add_argument("--auto_parallel", type=bool, default=default_app_config.auto_parallel, \
help="True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use.") # False
parser.add_argument("--output_dir", "-o", type=str, default=default_app_config.output_dir, \
help="directory to save the outputs")
parser.add_argument("--whisper_implementation", type=str, default=default_whisper_implementation, choices=["whisper", "faster-whisper"],\
help="the Whisper implementation to use")
parser.add_argument("--compute_type", type=str, default=default_app_config.compute_type, choices=["default", "auto", "int8", "int8_float16", "int16", "float16", "float32"], \
help="the compute type to use for inference")
parser.add_argument("--threads", type=optional_int, default=0,
help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
parser.add_argument("--vad_max_merge_size", type=int, default=default_app_config.vad_max_merge_size, \
help="The number of VAD - Max Merge Size (s).") # 30
parser.add_argument("--language", type=str, default=None, choices=sorted(get_lang_whisper_names()) + sorted([k.title() for k in _TO_LANG_CODE_WHISPER.keys()]),
help="language spoken in the audio, specify None to perform language detection")
parser.add_argument("--save_downloaded_files", action='store_true', \
help="True to move downloaded files to outputs directory. This argument will take effect only after output_dir is set.")
parser.add_argument("--merge_subtitle_with_sources", action='store_true', \
help="True to merge subtitle(srt) with sources and move the sources files to the outputs directory. This argument will take effect only after output_dir is set.")
parser.add_argument("--input_max_file_name_length", type=int, default=100, \
help="Maximum length of a file name.")
parser.add_argument("--autolaunch", action='store_true', \
help="open the webui URL in the system's default browser upon launch")
parser.add_argument('--auth_token', type=str, default=default_app_config.auth_token, help='HuggingFace API Token (optional)')
parser.add_argument("--diarization", type=str2bool, default=default_app_config.diarization, \
help="whether to perform speaker diarization")
parser.add_argument("--diarization_num_speakers", type=int, default=default_app_config.diarization_speakers, help="Number of speakers")
parser.add_argument("--diarization_min_speakers", type=int, default=default_app_config.diarization_min_speakers, help="Minimum number of speakers")
parser.add_argument("--diarization_max_speakers", type=int, default=default_app_config.diarization_max_speakers, help="Maximum number of speakers")
parser.add_argument("--diarization_process_timeout", type=int, default=default_app_config.diarization_process_timeout, \
help="Number of seconds before inactivate diarization processes are terminated. Use 0 to close processes immediately, or None for no timeout.")
args = parser.parse_args().__dict__
updated_config = default_app_config.update(**args)
# updated_config.whisper_implementation = "faster-whisper"
# updated_config.input_audio_max_duration = -1
# updated_config.default_model_name = "large-v2"
# updated_config.output_dir = "output"
# updated_config.vad_max_merge_size = 90
# updated_config.merge_subtitle_with_sources = False
# updated_config.autolaunch = True
# updated_config.auto_parallel = False
# updated_config.save_downloaded_files = True
try:
if torch.cuda.is_available():
deviceId = torch.cuda.current_device()
totalVram = torch.cuda.get_device_properties(deviceId).total_memory
if totalVram/(1024*1024*1024) <= 4: #VRAM <= 4 GB
updated_config.vad_process_timeout = 0
except Exception as e:
print(traceback.format_exc())
print("Error detect vram: " + str(e))
if (threads := args.pop("threads")) > 0:
torch.set_num_threads(threads)
print("Using whisper implementation: " + updated_config.whisper_implementation)
create_ui(app_config=updated_config) |