Spaces:
Sleeping
Sleeping
osanseviero
commited on
Commit
·
46c15e8
1
Parent(s):
de86128
Add v0
Browse files- models.py +312 -16
- requirements.txt +2 -1
models.py
CHANGED
@@ -3,14 +3,16 @@ import pandas as pd
|
|
3 |
from datasets import load_dataset
|
4 |
from ast import literal_eval
|
5 |
import altair as alt
|
|
|
|
|
6 |
|
7 |
-
nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering"
|
8 |
"translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering"
|
9 |
]
|
10 |
audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"]
|
11 |
cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"]
|
12 |
multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"]
|
13 |
-
tabular = ["tabular-
|
14 |
|
15 |
modalities = {
|
16 |
"nlp": nlp_tasks,
|
@@ -52,10 +54,23 @@ base = st.selectbox(
|
|
52 |
supported_revisions)
|
53 |
data = process_dataset(base)
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
total_samples = data.shape[0]
|
56 |
st.metric(label="Total models", value=total_samples)
|
57 |
|
58 |
-
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users"])
|
59 |
|
60 |
with tab1:
|
61 |
st.header("Languages info")
|
@@ -78,9 +93,9 @@ with tab1:
|
|
78 |
return leng
|
79 |
|
80 |
data["languages"] = data.apply(make_list, axis=1)
|
81 |
-
data["
|
82 |
|
83 |
-
models_with_langs = data[data["
|
84 |
langs = models_with_langs["languages"].explode()
|
85 |
langs = langs[langs != {}]
|
86 |
total_langs = len(langs.unique())
|
@@ -93,7 +108,8 @@ with tab1:
|
|
93 |
with col3:
|
94 |
st.metric(label="Total Unique Languages", value=total_langs)
|
95 |
|
96 |
-
st.subheader("
|
|
|
97 |
linguality = st.selectbox(
|
98 |
'All or just Multilingual',
|
99 |
["All", "Just Multilingual", "Three or more languages"])
|
@@ -104,11 +120,11 @@ with tab1:
|
|
104 |
elif linguality == "Three or more languages":
|
105 |
filter = 2
|
106 |
|
107 |
-
models_with_langs = data[data["
|
108 |
-
df1 = models_with_langs['
|
109 |
st.bar_chart(df1)
|
110 |
|
111 |
-
st.subheader("
|
112 |
linguality_2 = st.selectbox(
|
113 |
'All or filtered',
|
114 |
["All", "No English", "Remove top 10"])
|
@@ -121,7 +137,7 @@ with tab1:
|
|
121 |
else:
|
122 |
filter = 2
|
123 |
|
124 |
-
models_with_langs = data[data["
|
125 |
langs = models_with_langs["languages"].explode()
|
126 |
langs = langs[langs != {}]
|
127 |
|
@@ -187,9 +203,8 @@ with tab2:
|
|
187 |
x='counts',
|
188 |
y=alt.X('license', sort=None)
|
189 |
))
|
190 |
-
st.text("There are some edge cases, as old repos using lists of licenses.
|
191 |
|
192 |
-
|
193 |
st.subheader("Raw Data")
|
194 |
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
|
195 |
st.dataframe(d)
|
@@ -197,18 +212,23 @@ with tab2:
|
|
197 |
with tab3:
|
198 |
st.header("Pipeline info")
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
no_pipeline_count = data["pipeline"].isna().sum()
|
201 |
col1, col2, col3 = st.columns(3)
|
202 |
with col1:
|
203 |
-
st.metric(label="
|
204 |
with col2:
|
205 |
st.metric(label="No pipeline Specified", value=no_pipeline_count)
|
206 |
with col3:
|
207 |
st.metric(label="Total Unique Pipelines", value=len(data["pipeline"].unique()))
|
208 |
|
209 |
-
st.subheader("Distribution of pipelines per model repo")
|
210 |
pipeline_filter = st.selectbox(
|
211 |
-
'
|
212 |
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"])
|
213 |
|
214 |
filter = 0
|
@@ -227,30 +247,306 @@ with tab3:
|
|
227 |
elif pipeline_filter == "Tabular":
|
228 |
filter = 6
|
229 |
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
|
|
232 |
st.write(alt.Chart(d).mark_bar().encode(
|
233 |
x='counts',
|
234 |
y=alt.X('pipeline', sort=None)
|
235 |
))
|
236 |
|
|
|
|
|
237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
|
|
240 |
|
241 |
|
|
|
|
|
242 |
|
|
|
|
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
|
|
|
|
246 |
|
|
|
|
|
247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
|
256 |
|
|
|
3 |
from datasets import load_dataset
|
4 |
from ast import literal_eval
|
5 |
import altair as alt
|
6 |
+
import plotly.graph_objs as go
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
|
9 |
+
nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering",
|
10 |
"translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering"
|
11 |
]
|
12 |
audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"]
|
13 |
cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"]
|
14 |
multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"]
|
15 |
+
tabular = ["tabular-classification", "tabular-regression"]
|
16 |
|
17 |
modalities = {
|
18 |
"nlp": nlp_tasks,
|
|
|
54 |
supported_revisions)
|
55 |
data = process_dataset(base)
|
56 |
|
57 |
+
def eval_tags(row):
|
58 |
+
tags = row["tags"]
|
59 |
+
if tags == "none" or tags == [] or tags == "{}":
|
60 |
+
return []
|
61 |
+
if tags[0] != "[":
|
62 |
+
tags = str([tags])
|
63 |
+
val = literal_eval(tags)
|
64 |
+
if isinstance(val, dict):
|
65 |
+
return []
|
66 |
+
return val
|
67 |
+
|
68 |
+
data["tags"] = data.apply(eval_tags, axis=1)
|
69 |
+
|
70 |
total_samples = data.shape[0]
|
71 |
st.metric(label="Total models", value=total_samples)
|
72 |
|
73 |
+
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users", "Raw Data"])
|
74 |
|
75 |
with tab1:
|
76 |
st.header("Languages info")
|
|
|
93 |
return leng
|
94 |
|
95 |
data["languages"] = data.apply(make_list, axis=1)
|
96 |
+
data["language_count"] = data.apply(language_count, axis=1)
|
97 |
|
98 |
+
models_with_langs = data[data["language_count"] > 0]
|
99 |
langs = models_with_langs["languages"].explode()
|
100 |
langs = langs[langs != {}]
|
101 |
total_langs = len(langs.unique())
|
|
|
108 |
with col3:
|
109 |
st.metric(label="Total Unique Languages", value=total_langs)
|
110 |
|
111 |
+
st.subheader("Count of languages per model repo")
|
112 |
+
st.text("Some repos are for multiple languages, so the count is greater than 1")
|
113 |
linguality = st.selectbox(
|
114 |
'All or just Multilingual',
|
115 |
["All", "Just Multilingual", "Three or more languages"])
|
|
|
120 |
elif linguality == "Three or more languages":
|
121 |
filter = 2
|
122 |
|
123 |
+
models_with_langs = data[data["language_count"] > filter]
|
124 |
+
df1 = models_with_langs['language_count'].value_counts()
|
125 |
st.bar_chart(df1)
|
126 |
|
127 |
+
st.subheader("Most frequent languages")
|
128 |
linguality_2 = st.selectbox(
|
129 |
'All or filtered',
|
130 |
["All", "No English", "Remove top 10"])
|
|
|
137 |
else:
|
138 |
filter = 2
|
139 |
|
140 |
+
models_with_langs = data[data["language_count"] > 0]
|
141 |
langs = models_with_langs["languages"].explode()
|
142 |
langs = langs[langs != {}]
|
143 |
|
|
|
203 |
x='counts',
|
204 |
y=alt.X('license', sort=None)
|
205 |
))
|
206 |
+
st.text("There are some edge cases, as old repos using lists of licenses.")
|
207 |
|
|
|
208 |
st.subheader("Raw Data")
|
209 |
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
|
210 |
st.dataframe(d)
|
|
|
212 |
with tab3:
|
213 |
st.header("Pipeline info")
|
214 |
|
215 |
+
tags = data["tags"].explode()
|
216 |
+
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
|
217 |
+
s = tags["tag"]
|
218 |
+
s = s[s.apply(type) == str]
|
219 |
+
unique_tags = len(s.unique())
|
220 |
+
|
221 |
no_pipeline_count = data["pipeline"].isna().sum()
|
222 |
col1, col2, col3 = st.columns(3)
|
223 |
with col1:
|
224 |
+
st.metric(label="# models that have any pipeline", value=total_samples-no_pipeline_count)
|
225 |
with col2:
|
226 |
st.metric(label="No pipeline Specified", value=no_pipeline_count)
|
227 |
with col3:
|
228 |
st.metric(label="Total Unique Pipelines", value=len(data["pipeline"].unique()))
|
229 |
|
|
|
230 |
pipeline_filter = st.selectbox(
|
231 |
+
'Modalities',
|
232 |
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"])
|
233 |
|
234 |
filter = 0
|
|
|
247 |
elif pipeline_filter == "Tabular":
|
248 |
filter = 6
|
249 |
|
250 |
+
st.subheader("High-level metrics")
|
251 |
+
filtered_data = data[data['pipeline'].notna()]
|
252 |
+
|
253 |
+
if filter == 1:
|
254 |
+
filtered_data = data[data["modality"] == "nlp"]
|
255 |
+
elif filter == 2:
|
256 |
+
filtered_data = data[data["modality"] == "cv"]
|
257 |
+
elif filter == 3:
|
258 |
+
filtered_data = data[data["modality"] == "audio"]
|
259 |
+
elif filter == 4:
|
260 |
+
filtered_data = data[data["modality"] == "rl"]
|
261 |
+
elif filter == 5:
|
262 |
+
filtered_data = data[data["modality"] == "multimodal"]
|
263 |
+
elif filter == 6:
|
264 |
+
filtered_data = data[data["modality"] == "tabular"]
|
265 |
+
|
266 |
+
col1, col2, col3 = st.columns(3)
|
267 |
+
with col1:
|
268 |
+
p = st.selectbox(
|
269 |
+
'What pipeline do you want to see?',
|
270 |
+
["all", *filtered_data["pipeline"].unique()]
|
271 |
+
)
|
272 |
+
with col2:
|
273 |
+
l = st.selectbox(
|
274 |
+
'What library do you want to see?',
|
275 |
+
["all", *filtered_data["library"].unique()]
|
276 |
+
)
|
277 |
+
with col3:
|
278 |
+
f = st.selectbox(
|
279 |
+
'What framework support? (transformers)',
|
280 |
+
["all", "py", "tf", "jax"]
|
281 |
+
)
|
282 |
+
|
283 |
+
col1, col2 = st.columns(2)
|
284 |
+
with col1:
|
285 |
+
filt = st.multiselect(
|
286 |
+
label="Tags (All by default)",
|
287 |
+
options=s.unique(),
|
288 |
+
default=None)
|
289 |
+
with col2:
|
290 |
+
o = st.selectbox(
|
291 |
+
label="Operation (for tags)",
|
292 |
+
options=["Any", "All", "None"]
|
293 |
+
)
|
294 |
+
|
295 |
+
def filter_fn(row):
|
296 |
+
tags = row["tags"]
|
297 |
+
tags[:] = [d for d in tags if isinstance(d, str)]
|
298 |
+
if o == "All":
|
299 |
+
if all(elem in tags for elem in filt):
|
300 |
+
return True
|
301 |
+
|
302 |
+
s1 = set(tags)
|
303 |
+
s2 = set(filt)
|
304 |
+
if o == "Any":
|
305 |
+
if bool(s1 & s2):
|
306 |
+
return True
|
307 |
+
if o == "None":
|
308 |
+
if len(s1.intersection(s2)) == 0:
|
309 |
+
return True
|
310 |
+
return False
|
311 |
+
|
312 |
+
|
313 |
+
if p != "all":
|
314 |
+
filtered_data = filtered_data[filtered_data["pipeline"] == p]
|
315 |
+
if l != "all":
|
316 |
+
filtered_data = filtered_data[filtered_data["library"] == l]
|
317 |
+
if f != "all":
|
318 |
+
if f == "py":
|
319 |
+
filtered_data = filtered_data[filtered_data["pytorch"] == 1]
|
320 |
+
elif f == "tf":
|
321 |
+
filtered_data = filtered_data[filtered_data["tensorflow"] == 1]
|
322 |
+
elif f == "jax":
|
323 |
+
filtered_data = filtered_data[filtered_data["jax"] == 1]
|
324 |
+
if filt != []:
|
325 |
+
filtered_data = filtered_data[filtered_data.apply(filter_fn, axis=1)]
|
326 |
+
|
327 |
+
|
328 |
+
d = filtered_data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index()
|
329 |
+
columns_of_interest = ["downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
|
330 |
+
grouped_data = filtered_data.groupby("pipeline").sum()[columns_of_interest]
|
331 |
+
final_data = pd.merge(
|
332 |
+
d, grouped_data, how="outer", on="pipeline"
|
333 |
+
)
|
334 |
+
sums = grouped_data.sum()
|
335 |
+
|
336 |
+
col1, col2, col3 = st.columns(3)
|
337 |
+
with col1:
|
338 |
+
st.metric(label="Total models", value=filtered_data.shape[0])
|
339 |
+
with col2:
|
340 |
+
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"])
|
341 |
+
with col3:
|
342 |
+
st.metric(label="Cumulative likes", value=sums["likes"])
|
343 |
+
|
344 |
+
col1, col2, col3 = st.columns(3)
|
345 |
+
with col1:
|
346 |
+
st.metric(label="Total in PT", value=sums["pytorch"])
|
347 |
+
with col2:
|
348 |
+
st.metric(label="Total in TF", value=sums["tensorflow"])
|
349 |
+
with col3:
|
350 |
+
st.metric(label="Total in JAX", value=sums["jax"])
|
351 |
+
|
352 |
+
st.metric(label="Unique Tags", value=unique_tags)
|
353 |
+
|
354 |
+
|
355 |
|
356 |
+
st.subheader("Count of models per pipeline")
|
357 |
st.write(alt.Chart(d).mark_bar().encode(
|
358 |
x='counts',
|
359 |
y=alt.X('pipeline', sort=None)
|
360 |
))
|
361 |
|
362 |
+
st.subheader("Aggregated data")
|
363 |
+
st.dataframe(final_data)
|
364 |
|
365 |
+
st.subheader("Most common model types (specific to transformers")
|
366 |
+
d = filtered_data["model_type"].value_counts().rename_axis("model_type").to_frame('counts').reset_index()
|
367 |
+
d = d.iloc[:15]
|
368 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
369 |
+
x='counts',
|
370 |
+
y=alt.X('model_type', sort=None)
|
371 |
+
))
|
372 |
|
373 |
+
st.subheader("Most common library types (Learn more in library tab)")
|
374 |
+
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
|
375 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
376 |
+
x='counts',
|
377 |
+
y=alt.X('library', sort=None)
|
378 |
+
))
|
379 |
+
|
380 |
+
st.subheader("Tags by count")
|
381 |
+
tags = filtered_data["tags"].explode()
|
382 |
+
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
|
383 |
+
st.write(alt.Chart(tags.head(30)).mark_bar().encode(
|
384 |
+
x='counts',
|
385 |
+
y=alt.X('tag', sort=None)
|
386 |
+
))
|
387 |
+
|
388 |
+
st.subheader("Raw Data")
|
389 |
+
columns_of_interest = [
|
390 |
+
"repo_id", "author", "model_type", "files_per_repo", "library",
|
391 |
+
"downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
|
392 |
+
raw_data = filtered_data[columns_of_interest]
|
393 |
+
st.dataframe(raw_data)
|
394 |
+
|
395 |
+
|
396 |
|
397 |
+
# todo : add activity metric
|
398 |
|
399 |
|
400 |
+
with tab4:
|
401 |
+
st.header("Discussions Tab info")
|
402 |
|
403 |
+
columns_of_interest = ["prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]
|
404 |
+
sums = data[columns_of_interest].sum()
|
405 |
|
406 |
+
col1, col2, col3, col4 = st.columns(4)
|
407 |
+
with col1:
|
408 |
+
st.metric(label="Total PRs", value=sums["prs_count"])
|
409 |
+
with col2:
|
410 |
+
st.metric(label="PRs opened", value=sums["prs_open"])
|
411 |
+
with col3:
|
412 |
+
st.metric(label="PRs merged", value=sums["prs_merged"])
|
413 |
+
with col4:
|
414 |
+
st.metric(label="PRs closed", value=sums["prs_closed"])
|
415 |
|
416 |
+
col1, col2, col3 = st.columns(3)
|
417 |
+
with col1:
|
418 |
+
st.metric(label="Total discussions", value=sums["discussions_count"])
|
419 |
+
with col2:
|
420 |
+
st.metric(label="Discussions open", value=sums["discussions_open"])
|
421 |
+
with col3:
|
422 |
+
st.metric(label="Discussions closed", value=sums["discussions_closed"])
|
423 |
|
424 |
+
filtered_data = data[["repo_id", "prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]].sort_values("prs_count", ascending=False).reset_index(drop=True)
|
425 |
+
st.dataframe(filtered_data)
|
426 |
|
427 |
+
with tab5:
|
428 |
+
st.header("Library info")
|
429 |
|
430 |
+
no_library_count = data["library"].isna().sum()
|
431 |
+
col1, col2, col3 = st.columns(3)
|
432 |
+
with col1:
|
433 |
+
st.metric(label="# models that have any library", value=total_samples-no_library_count)
|
434 |
+
with col2:
|
435 |
+
st.metric(label="No library Specified", value=no_library_count)
|
436 |
+
with col3:
|
437 |
+
st.metric(label="Total Unique library", value=len(data["library"].unique()))
|
438 |
|
439 |
|
440 |
+
st.subheader("High-level metrics")
|
441 |
+
filtered_data = data[data['library'].notna()]
|
442 |
+
|
443 |
+
col1, col2 = st.columns(2)
|
444 |
+
with col1:
|
445 |
+
lib = st.selectbox(
|
446 |
+
'What library do you want to see? ',
|
447 |
+
["all", *filtered_data["library"].unique()]
|
448 |
+
)
|
449 |
+
with col2:
|
450 |
+
pip = st.selectbox(
|
451 |
+
'What pipeline do you want to see? ',
|
452 |
+
["all", *filtered_data["pipeline"].unique()]
|
453 |
+
)
|
454 |
+
|
455 |
+
if pip != "all":
|
456 |
+
filtered_data = filtered_data[filtered_data["pipeline"] == pip]
|
457 |
+
if lib != "all":
|
458 |
+
filtered_data = filtered_data[filtered_data["library"] == lib]
|
459 |
|
460 |
|
461 |
+
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index()
|
462 |
+
grouped_data = filtered_data.groupby("library").sum()[["downloads_30d", "likes"]]
|
463 |
+
final_data = pd.merge(
|
464 |
+
d, grouped_data, how="outer", on="library"
|
465 |
+
)
|
466 |
+
sums = grouped_data.sum()
|
467 |
|
468 |
+
col1, col2, col3 = st.columns(3)
|
469 |
+
with col1:
|
470 |
+
st.metric(label="Total models", value=filtered_data.shape[0])
|
471 |
+
with col2:
|
472 |
+
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"])
|
473 |
+
with col3:
|
474 |
+
st.metric(label="Cumulative likes", value=sums["likes"])
|
475 |
+
|
476 |
+
st.subheader("Most common library types (Learn more in library tab)")
|
477 |
+
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
|
478 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
479 |
+
x='counts',
|
480 |
+
y=alt.X('library', sort=None)
|
481 |
+
))
|
482 |
|
483 |
+
|
484 |
+
|
485 |
+
st.subheader("Aggregated Data")
|
486 |
+
st.dataframe(final_data)
|
487 |
+
|
488 |
+
st.subheader("Raw Data")
|
489 |
+
columns_of_interest = ["repo_id", "author", "files_per_repo", "library", "downloads_30d", "likes"]
|
490 |
+
filtered_data = filtered_data[columns_of_interest]
|
491 |
+
st.dataframe(filtered_data)
|
492 |
+
|
493 |
+
with tab6:
|
494 |
+
st.header("Model cards")
|
495 |
+
|
496 |
+
columns_of_interest = ["has_model_index", "has_metadata", "has_text", "text_length"]
|
497 |
+
rows = data.shape[0]
|
498 |
+
|
499 |
+
cond = data["has_model_index"] | data["has_text"]
|
500 |
+
with_model_card = data[cond]
|
501 |
+
c_model_card = with_model_card.shape[0]
|
502 |
+
st.subheader("High-level metrics")
|
503 |
+
col1, col2, col3 = st.columns(3)
|
504 |
+
with col1:
|
505 |
+
st.metric(label="# models with model card file", value=c_model_card)
|
506 |
+
with col2:
|
507 |
+
st.metric(label="# models without model card file", value=rows-c_model_card)
|
508 |
+
|
509 |
+
with_index = data["has_model_index"].sum()
|
510 |
+
with col1:
|
511 |
+
st.metric(label="# models with model index", value=with_index)
|
512 |
+
with col2:
|
513 |
+
st.metric(label="# models without model index", value=rows-with_index)
|
514 |
+
|
515 |
+
with_text = data["has_text"]
|
516 |
+
with col1:
|
517 |
+
st.metric(label="# models with model card text", value=with_text.sum())
|
518 |
+
with col2:
|
519 |
+
st.metric(label="# models without model card text", value=rows-with_text.sum())
|
520 |
+
|
521 |
+
|
522 |
+
st.subheader("Length (chars) of model card content")
|
523 |
+
fig, ax = plt.subplots()
|
524 |
+
ax = data["length_bins"].value_counts().plot.bar()
|
525 |
+
st.metric(label="# average length of model card (chars)", value=data[with_text]["text_length"].mean())
|
526 |
+
st.pyplot(fig)
|
527 |
+
|
528 |
+
st.subheader("Tags (Read more in Pipeline tab)")
|
529 |
+
tags = data["tags"].explode()
|
530 |
+
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
|
531 |
+
st.write(alt.Chart(tags.head(30)).mark_bar().encode(
|
532 |
+
x='counts',
|
533 |
+
y=alt.X('tag', sort=None)
|
534 |
+
))
|
535 |
+
|
536 |
+
with tab7:
|
537 |
+
st.header("Authors")
|
538 |
+
st.text("This info corresponds to the repos owned by the authors")
|
539 |
+
authors = data.groupby("author").sum().drop(["text_length", "Unnamed: 0", "language_count"], axis=1).sort_values("downloads_30d", ascending=False)
|
540 |
+
d = data["author"].value_counts().rename_axis("author").to_frame('counts').reset_index()
|
541 |
+
final_data = pd.merge(
|
542 |
+
d, authors, how="outer", on="author"
|
543 |
+
)
|
544 |
+
st.dataframe(final_data)
|
545 |
+
|
546 |
+
with tab8:
|
547 |
+
st.header("Raw Data")
|
548 |
+
d = data.astype(str)
|
549 |
+
st.dataframe(d)
|
550 |
|
551 |
|
552 |
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
datasets
|
|
|
|
1 |
+
datasets
|
2 |
+
plotly
|