Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from ast import literal_eval | |
import altair as alt | |
import matplotlib.pyplot as plt | |
from utils import process_dataset, eval_tags, change_and_delta | |
from language import process_for_lang, filter_multilinguality | |
from pipelines import filter_pipeline_data | |
def main(): | |
# Pick revision at top | |
supported_revisions = ["24_10_22", "17_10_22", "10_10_22", "27_09_22"] | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
new = st.selectbox( | |
'Last revision', | |
supported_revisions, | |
index=0) | |
with col2: | |
base = st.selectbox( | |
'Old revision', | |
supported_revisions, | |
index=1) | |
with col3: | |
base_old = st.selectbox( | |
'Very old revision', | |
supported_revisions, | |
index=2) | |
# Process dataset | |
old_old_data = process_dataset(base_old) | |
old_data = process_dataset(base) | |
data = process_dataset(new) | |
old_old_data["tags"] = old_old_data.apply(eval_tags, axis=1) | |
old_data["tags"] = old_data.apply(eval_tags, axis=1) | |
data["tags"] = data.apply(eval_tags, axis=1) | |
# High level count of models and rate of change | |
total_samples_old_old = old_old_data.shape[0] | |
total_samples_old = old_data.shape[0] | |
total_samples = data.shape[0] | |
curr_change, delta = change_and_delta(total_samples_old_old, total_samples_old, total_samples) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="Total models", value=total_samples, delta=total_samples-total_samples_old) | |
with col2: | |
st.metric(label="Rate of change", value=curr_change, delta=delta) | |
# Tabs don't work in Spaces st version | |
#tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users", "Raw Data"]) | |
tab = st.selectbox( | |
'Topic of interest', | |
["Language","License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super Users", "Raw Data"]) | |
if tab == "Language": | |
st.header("Languages info") | |
filtered_data = data.copy() | |
old_filtered_data = old_data.copy() | |
old_old_filtered_data = old_old_data.copy() | |
modality = st.selectbox( | |
'Modalities', | |
["All", "NLP", "Audio", "Multimodal"]) | |
filtered_data, no_lang_count, total_langs, langs = process_for_lang(filtered_data, modality) | |
old_filtered_data, no_lang_count_old, total_langs_old, langs_old = process_for_lang(old_filtered_data, modality) | |
old_old_filtered_data, no_lang_count_old_old, total_langs_old_old, _ = process_for_lang(old_old_filtered_data, modality) | |
v = filtered_data.shape[0]-no_lang_count | |
v_old = old_filtered_data.shape[0]-no_lang_count_old | |
v_old_old = old_old_filtered_data.shape[0]-no_lang_count_old_old | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="Language Specified", value=v, delta=int(v-v_old)) | |
with col2: | |
curr_change, delta = change_and_delta(v_old_old, v_old, v) | |
st.metric(label="Language Specified Rate of Change", value=curr_change, delta=delta) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="No Language Specified", value=no_lang_count, delta=int(no_lang_count-no_lang_count_old)) | |
with col2: | |
curr_change, delta = change_and_delta(no_lang_count_old_old, no_lang_count_old, no_lang_count) | |
st.metric(label="No Language Specified Rate of Change", value=curr_change, delta=delta) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="Total Unique Languages", value=total_langs, delta=int(total_langs-total_langs_old)) | |
with col2: | |
curr_change, delta = change_and_delta(total_langs_old_old, total_langs_old, total_langs) | |
st.metric(label="Total Unique Languages Rate of Change", value=curr_change, delta=delta) | |
st.text(f"New languages {set(langs)-set(langs_old)}") | |
st.text(f"Lost languages {set(langs_old)-set(langs)}") | |
st.subheader("Count of languages per model repo") | |
st.text("Some repos are for multiple languages, so the count is greater than 1") | |
linguality = st.selectbox( | |
'All or just Multilingual', | |
["All", "Just Multilingual", "Three or more languages"]) | |
models_with_langs = filter_multilinguality(filtered_data, linguality) | |
models_with_langs_old = filter_multilinguality(old_filtered_data, linguality) | |
df1 = models_with_langs['language_count'].value_counts() | |
df1_old = models_with_langs_old['language_count'].value_counts() | |
st.bar_chart(df1) | |
st.subheader("Most frequent languages") | |
linguality_2 = st.selectbox( | |
'All or filtered', | |
["All", "No English", "Remove top 10"]) | |
models_with_langs = filtered_data[filtered_data["language_count"] > 0] | |
langs = models_with_langs["languages"].explode() | |
langs = langs[langs != {}] | |
orig_d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index() | |
d = orig_d | |
models_with_langs_old = old_filtered_data[old_filtered_data["language_count"] > 0] | |
langs = models_with_langs_old["languages"].explode() | |
langs = langs[langs != {}] | |
orig_d_old = langs.value_counts().rename_axis("language").to_frame('counts').reset_index() | |
if linguality_2 == "No English": | |
d = orig_d.iloc[1:] | |
elif linguality_2 == "Remove top 10": | |
d = orig_d.iloc[10:] | |
# Just keep top 25 to avoid vertical scroll | |
d = d.iloc[:25] | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('language', sort=None) | |
)) | |
st.subheader("Raw Data") | |
l = df1.rename_axis("lang_count").reset_index().rename(columns={"language_count": "r_c"}) | |
l_old = df1_old.rename_axis("lang_count").reset_index().rename(columns={"language_count": "old_r_c"}) | |
final_data = pd.merge( | |
l, l_old, how="outer", on="lang_count" | |
) | |
final_data["diff"] = final_data["r_c"] - final_data["old_r_c"] | |
st.dataframe(final_data) | |
d = orig_d.astype(str) | |
orig_d_old = orig_d_old.astype(str).rename(columns={"counts": "old_c"}) | |
final_data = pd.merge( | |
d, orig_d_old, how="outer", on="language" | |
) | |
final_data['counts'] = final_data['counts'].fillna(0).astype(int) | |
final_data['old_c'] = final_data['old_c'].fillna(0).astype(int) | |
final_data["diff"] = final_data["counts"] - final_data["old_c"] | |
final_data['language'] = final_data['language'].astype(str) | |
st.dataframe(final_data) | |
#with tab2: | |
if tab == "License": | |
st.header("License info") | |
no_license_count = data["license"].isna().sum() | |
no_license_count_old = old_data["license"].isna().sum() | |
no_license_count_old_old = old_old_data["license"].isna().sum() | |
col1, col2 = st.columns(2) | |
with col1: | |
v = total_samples-no_license_count | |
v_old = total_samples_old-no_license_count_old | |
st.metric(label="License Specified", value=v, delta=int(v-v_old)) | |
with col2: | |
v = total_samples-no_license_count | |
v_old = total_samples_old-no_license_count_old | |
v_old_old = total_samples_old-no_license_count_old_old | |
curr_change, delta = change_and_delta(v_old_old, v_old, v) | |
st.metric(label="License Specified Rate of Change", value=curr_change, delta=delta) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="No License Specified", value=no_license_count, delta=int(no_license_count-no_license_count_old)) | |
with col2: | |
curr_change, delta = change_and_delta(no_license_count_old_old, no_license_count_old, no_license_count) | |
st.metric(label="No License Specified Rate of Change", value=curr_change, delta=delta) | |
col1, col2 = st.columns(2) | |
unique_licenses = len(data["license"].unique()) | |
unique_licenses_old = len(old_data["license"].unique()) | |
unique_licenses_old_old = len(old_old_data["license"].unique()) | |
with col1: | |
st.metric(label="Total Unique Licenses", value=unique_licenses, delta=int(unique_licenses-unique_licenses_old)) | |
with col2: | |
curr_change, delta = change_and_delta(unique_licenses_old_old, unique_licenses_old, unique_licenses) | |
st.metric(label="Total Unique Licenses Rate of Change", value=curr_change, delta=delta) | |
st.text(f"New licenses {set(data['license'].unique())-set(old_data['license'].unique())}") | |
st.text(f"Old licenses {set(old_data['license'].unique())-set(data['license'].unique())}") | |
st.subheader("Distribution of licenses per model repo") | |
license_filter = st.selectbox( | |
'All or filtered', | |
["All", "No Apache 2.0", "Remove top 10"]) | |
filter = 0 | |
if license_filter == "All": | |
filter = 0 | |
elif license_filter == "No Apache 2.0": | |
filter = 1 | |
else: | |
filter = 2 | |
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index() | |
if filter == 1: | |
d = d.iloc[1:] | |
elif filter == 2: | |
d = d.iloc[10:] | |
# Just keep top 25 to avoid vertical scroll | |
d = d.iloc[:25] | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('license', sort=None) | |
)) | |
st.text("There are some edge cases, as old repos using lists of licenses.") | |
st.subheader("Raw Data") | |
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index() | |
d_old = old_data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index().rename(columns={"counts": "old_c"}) | |
final_data = pd.merge( | |
d, d_old, how="outer", on="license" | |
) | |
final_data["diff"] = final_data["counts"] - final_data["old_c"] | |
st.dataframe(final_data) | |
#with tab3: | |
if tab == "Pipeline": | |
st.header("Pipeline info") | |
tags = data["tags"].explode() | |
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() | |
s = tags["tag"] | |
s = s[s.apply(type) == str] | |
unique_tags = len(s.unique()) | |
tags_old = old_data["tags"].explode() | |
tags_old = tags_old[tags_old.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() | |
s_o = tags_old["tag"] | |
s_o = s_o[s_o.apply(type) == str] | |
unique_tags_old = len(s_o.unique()) | |
tags_old_old = old_old_data["tags"].explode() | |
tags_old_old = tags_old_old[tags_old_old.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() | |
s_old_old = tags_old_old["tag"] | |
s_old_old = s_old_old[s_old_old.apply(type) == str] | |
unique_tags_old_old = len(s_old_old.unique()) | |
no_pipeline_count = data["pipeline"].isna().sum() | |
no_pipeline_count_old = old_data["pipeline"].isna().sum() | |
no_pipeline_count_old_old = old_old_data["pipeline"].isna().sum() | |
col1, col2 = st.columns(2) | |
v = total_samples-no_pipeline_count | |
v_old = total_samples_old-no_pipeline_count_old | |
v_old_old = total_samples_old_old-no_pipeline_count_old_old | |
with col1: | |
st.metric(label="# models that have any pipeline", value=v, delta=int(v-v_old)) | |
with col2: | |
curr_change, delta = change_and_delta(v_old_old, v_old, v) | |
st.metric(label="# models rate of change", value=curr_change, delta=delta) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="No pipeline Specified", value=no_pipeline_count, delta=int(no_pipeline_count-no_pipeline_count_old)) | |
with col2: | |
curr_change, delta = change_and_delta(no_pipeline_count_old_old, no_pipeline_count_old, no_pipeline_count) | |
st.metric(label="No pipeline Specified rate of change", value=curr_change, delta=delta) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="Total Unique Tags", value=unique_tags, delta=int(unique_tags-unique_tags_old)) | |
with col2: | |
curr_change, delta = change_and_delta(unique_tags_old_old, unique_tags_old, unique_tags) | |
st.metric(label="Total Unique Tags", value=curr_change, delta=delta) | |
modality_filter = st.selectbox( | |
'Modalities', | |
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"]) | |
st.subheader("High-level metrics") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
p = st.selectbox( | |
'What pipeline do you want to see?', | |
["all", *data["pipeline"].unique()] | |
) | |
with col2: | |
l = st.selectbox( | |
'What library do you want to see?', | |
["all", "not transformers", *data["library"].unique()] | |
) | |
with col3: | |
f = st.selectbox( | |
'What trf framework support?', | |
["all", "pytorch", "tensorflow", "jax"] | |
) | |
col1, col2 = st.columns(2) | |
with col1: | |
filt = st.multiselect( | |
label="Tags (All by default)", | |
options=s.unique(), | |
default=None) | |
with col2: | |
o = st.selectbox( | |
label="Operation (for tags)", | |
options=["Any", "All", "None"] | |
) | |
filtered_data, tags = filter_pipeline_data(data, modality_filter, p, l, f, filt, o) | |
filtered_data_old, old_tags = filter_pipeline_data(old_data, modality_filter, p, l, f, filt, o) | |
filtered_data_old_old, old_old_tags = filter_pipeline_data(old_old_data, modality_filter, p, l, f, filt, o) | |
st.subheader("Pipeline breakdown") | |
d = filtered_data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index() | |
columns_of_interest = ["downloads_30d", "likes", "pytorch", "tensorflow", "jax"] | |
grouped_data = filtered_data.groupby("pipeline").sum()[columns_of_interest] | |
final_data = pd.merge( | |
d, grouped_data, how="outer", on="pipeline" | |
) | |
d_old = filtered_data_old["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index() | |
grouped_data_old = filtered_data_old.groupby("pipeline").sum()[columns_of_interest] | |
final_data_old = pd.merge( | |
d_old, grouped_data_old, how="outer", on="pipeline" | |
) | |
d_old = filtered_data_old_old["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index() | |
grouped_data_old_old = filtered_data_old_old.groupby("pipeline").sum()[columns_of_interest] | |
sums = grouped_data.sum() | |
sums_old = grouped_data_old.sum() | |
sums_old_old = grouped_data_old_old.sum() | |
col1, col2, col3, col4 = st.columns(4) | |
v = filtered_data.shape[0] | |
v_old = filtered_data_old.shape[0] | |
v_old_old = filtered_data_old_old.shape[0] | |
with col1: | |
st.metric(label="Total models", value=v, delta=int(v - v_old)) | |
with col2: | |
curr_change, delta = change_and_delta(v_old_old, v_old, v) | |
st.metric(label="Total models rate of change", value=curr_change, delta=delta) | |
with col3: | |
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"], delta=int(sums["downloads_30d"] - sums_old["downloads_30d"])) | |
with col4: | |
print(sums_old_old["downloads_30d"], sums_old["downloads_30d"], sums["downloads_30d"]) | |
curr_change, delta = change_and_delta(sums_old_old["downloads_30d"], sums_old["downloads_30d"], sums["downloads_30d"]) | |
st.metric(label="Cumulative Downloads (30d) rate of change", value=curr_change, delta=delta) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric(label="Total unique pipelines", value=len(filtered_data["pipeline"].unique())) | |
with col2: | |
st.metric(label="Cumulative likes", value=sums["likes"], delta=int(sums["likes"] - sums_old["likes"])) | |
with col3: | |
curr_change, delta = change_and_delta(sums_old_old["likes"], sums_old["likes"], sums["likes"]) | |
st.metric(label="Cumulative Likes rate of change", value=curr_change, delta=delta) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric(label="Total in PT", value=sums["pytorch"], delta=int(sums["pytorch"] - sums_old["pytorch"])) | |
with col2: | |
st.metric(label="Total in TF", value=sums["tensorflow"], delta=int(sums["tensorflow"] - sums_old["tensorflow"])) | |
with col3: | |
st.metric(label="Total in JAX", value=sums["jax"], delta=int(sums["jax"] - sums_old["jax"])) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="Total unique libraries", value=len(filtered_data["library"].unique())) | |
with col2: | |
st.metric(label="Total unique modality", value=len(filtered_data["modality"].unique())) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="Total transformers models", value=len(filtered_data[filtered_data["library"] == "transformers"])) | |
with col2: | |
st.metric(label="Total non transformers models", value=len(filtered_data[filtered_data["library"] != "transformers"])) | |
st.metric(label="Unique Tags", value=len(tags), delta=int(len(tags) - len(old_tags))) | |
st.text(f"New tags {set(tags)-set(old_tags)}") | |
st.text(f"Lost tags {set(old_tags)-set(tags)}") | |
st.subheader("Pipeline breakdown by modality") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="Total CV models", value=len(filtered_data[filtered_data["modality"] == "cv"])) | |
with col2: | |
st.metric(label="Total NLP models", value=len(filtered_data[filtered_data["modality"] == "nlp"])) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="Total Audio models", value=len(filtered_data[filtered_data["modality"] == "audio"])) | |
with col2: | |
st.metric(label="Total RL models", value=len(filtered_data[filtered_data["modality"] == "rl"])) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric(label="Total Tabular models", value=len(filtered_data[filtered_data["modality"] == "tabular"])) | |
with col2: | |
st.metric(label="Total Multimodal models", value=len(filtered_data[filtered_data["modality"] == "multimodal"])) | |
st.subheader("Count of models per pipeline") | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('pipeline', sort=None) | |
)) | |
st.subheader("Aggregated data") | |
st.dataframe(final_data) | |
st.subheader("Most common model types (specific to transformers)") | |
d = filtered_data["model_type"].value_counts().rename_axis("model_type").to_frame('counts').reset_index() | |
d = d.iloc[:15] | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('model_type', sort=None) | |
)) | |
st.subheader("Most common library types (Learn more in library tab)") | |
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15) | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('library', sort=None) | |
)) | |
st.subheader("Tags by count") | |
tags = filtered_data["tags"].explode() | |
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() | |
st.write(alt.Chart(tags.head(30)).mark_bar().encode( | |
x='counts', | |
y=alt.X('tag', sort=None) | |
)) | |
st.subheader("Raw Data") | |
columns_of_interest = [ | |
"repo_id", "author", "model_type", "files_per_repo", "library", | |
"downloads_30d", "likes", "pytorch", "tensorflow", "jax"] | |
raw_data = filtered_data[columns_of_interest] | |
st.dataframe(raw_data) | |
# todo : add activity metric | |
#with tab4: | |
if tab == "Discussion Features": | |
st.header("Discussions Tab info") | |
columns_of_interest = ["prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"] | |
sums = data[columns_of_interest].sum() | |
sums_old = old_data[columns_of_interest].sum() | |
sums_old_old = old_old_data[columns_of_interest].sum() | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.metric(label="Total PRs", value=sums["prs_count"],delta=int(sums["prs_count"] - sums_old["prs_count"])) | |
with col2: | |
st.metric(label="PRs opened", value=sums["prs_open"], delta=int(sums["prs_open"] - sums_old["prs_open"])) | |
with col3: | |
st.metric(label="PRs merged", value=sums["prs_merged"], delta=int(sums["prs_merged"] - sums_old["prs_merged"])) | |
with col4: | |
st.metric(label="PRs closed", value=sums["prs_closed"], delta=int(sums["prs_closed"] - sums_old["prs_closed"])) | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
curr_change, delta = change_and_delta(sums_old_old["prs_count"], sums_old["prs_count"], sums["prs_count"]) | |
st.metric(label="Total PRs change", value=curr_change,delta=delta) | |
with col2: | |
curr_change, delta = change_and_delta(sums_old_old["prs_open"], sums_old["prs_open"], sums["prs_open"]) | |
st.metric(label="PRs opened change", value=curr_change,delta=delta) | |
with col3: | |
curr_change, delta = change_and_delta(sums_old_old["prs_merged"], sums_old["prs_merged"], sums["prs_merged"]) | |
st.metric(label="PRs merged change", value=curr_change,delta=delta) | |
with col4: | |
curr_change, delta = change_and_delta(sums_old_old["prs_closed"], sums_old["prs_closed"], sums["prs_closed"]) | |
st.metric(label="PRs closed change", value=curr_change,delta=delta) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric(label="Total discussions", value=sums["discussions_count"], delta=int(sums["discussions_count"] - sums_old["discussions_count"])) | |
with col2: | |
st.metric(label="Discussions open", value=sums["discussions_open"], delta=int(sums["discussions_open"] - sums_old["discussions_open"])) | |
with col3: | |
st.metric(label="Discussions closed", value=sums["discussions_closed"], delta=int(sums["discussions_closed"] - sums_old["discussions_closed"])) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
curr_change, delta = change_and_delta(sums_old_old["discussions_count"], sums_old["discussions_count"], sums["discussions_count"]) | |
st.metric(label="Total discussions change", value=curr_change,delta=delta) | |
with col2: | |
curr_change, delta = change_and_delta(sums_old_old["discussions_open"], sums_old["discussions_open"], sums["discussions_open"]) | |
st.metric(label="Discussions open change", value=curr_change,delta=delta) | |
with col3: | |
curr_change, delta = change_and_delta(sums_old_old["discussions_closed"], sums_old["discussions_closed"], sums["discussions_closed"]) | |
st.metric(label="Discussions closed change", value=curr_change,delta=delta) | |
filtered_data = data[["repo_id", "prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]].sort_values("prs_count", ascending=False).reset_index(drop=True) | |
st.dataframe(filtered_data) | |
#with tab5: | |
if tab == "Libraries": | |
st.header("Library info") | |
no_library_count = data["library"].isna().sum() | |
no_library_count_old = old_data["library"].isna().sum() | |
no_library_count_old_old = old_old_data["library"].isna().sum() | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
v = total_samples-no_library_count | |
v_old = total_samples_old-no_library_count_old | |
st.metric(label="# models that have any library", value=v, delta=int(v-v_old)) | |
with col2: | |
st.metric(label="No library Specified", value=no_library_count, delta=int(no_library_count-no_library_count_old)) | |
with col3: | |
v = len(data["library"].unique()) | |
v_old = len(old_data["library"].unique()) | |
st.metric(label="Total Unique library", value=v, delta=int(v-v_old)) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
v = total_samples-no_library_count | |
v_old = total_samples_old-no_library_count_old | |
v_old_old = total_samples_old_old-no_library_count_old_old | |
curr_change, delta = change_and_delta(v_old_old, v_old, v) | |
st.metric(label="# models that have any library change", value=curr_change, delta=delta) | |
with col2: | |
curr_change, delta = change_and_delta(no_library_count_old_old, no_library_count_old, no_library_count) | |
st.metric(label="No library Specified Change", value=curr_change, delta=delta) | |
with col3: | |
v = len(data["library"].unique()) | |
v_old = len(old_data["library"].unique()) | |
v_old_old = len(old_old_data["library"].unique()) | |
curr_change, delta = change_and_delta(v_old_old, v_old, v) | |
st.metric(label="Total Unique library", value=curr_change, delta=delta) | |
st.subheader("High-level metrics") | |
filtered_data = data[data['library'].notna()] | |
filtered_data_old = old_data[old_data['library'].notna()] | |
col1, col2 = st.columns(2) | |
with col1: | |
lib = st.selectbox( | |
'What library do you want to see? ', | |
["all", "not transformers", *filtered_data["library"].unique()] | |
) | |
with col2: | |
pip = st.selectbox( | |
'What pipeline do you want to see? ', | |
["all", *filtered_data["pipeline"].unique()] | |
) | |
if pip != "all" : | |
filtered_data = filtered_data[filtered_data["pipeline"] == pip] | |
filtered_data_old = filtered_data_old[filtered_data_old["pipeline"] == pip] | |
if lib != "all" and lib != "not transformers": | |
filtered_data = filtered_data[filtered_data["library"] == lib] | |
filtered_data_old = filtered_data_old[filtered_data_old["library"] == lib] | |
if lib == "not transformers": | |
filtered_data = filtered_data[filtered_data["library"] != "transformers"] | |
filtered_data_old = filtered_data_old[filtered_data_old["library"] != "transformers"] | |
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index() | |
grouped_data = filtered_data.groupby("library").sum()[["downloads_30d", "likes"]] | |
final_data = pd.merge( | |
d, grouped_data, how="outer", on="library" | |
) | |
sums = grouped_data.sum() | |
d_old = filtered_data_old["library"].value_counts().rename_axis("library").to_frame('counts').reset_index() | |
grouped_data_old = filtered_data_old.groupby("library").sum()[["downloads_30d", "likes"]] | |
final_data_old = pd.merge( | |
d_old, grouped_data_old, how="outer", on="library" | |
).add_suffix('_old') | |
final_data_old = final_data_old.rename(index=str, columns={"library_old": "library"}) | |
sums_old = grouped_data_old.sum() | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
v = filtered_data.shape[0] | |
v_old = filtered_data_old.shape[0] | |
st.metric(label="Total models", value=v, delta=int(v-v_old)) | |
with col2: | |
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"], delta=int(sums["downloads_30d"]-sums_old["downloads_30d"])) | |
with col3: | |
st.metric(label="Cumulative likes", value=sums["likes"], delta=int(sums["likes"]-sums_old["likes"])) | |
st.subheader("Most common library types (Learn more in library tab)") | |
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15) | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('library', sort=None) | |
)) | |
st.subheader("Aggregated Data") | |
final_data = pd.merge( | |
final_data, final_data_old, how="outer", on="library" | |
) | |
final_data["counts_diff"] = final_data["counts"] - final_data["counts_old"] | |
final_data["downloads_diff"] = final_data["downloads_30d"] - final_data["downloads_30d_old"] | |
final_data["likes_diff"] = final_data["likes"] - final_data["likes_old"] | |
st.dataframe(final_data) | |
st.subheader("Raw Data") | |
columns_of_interest = ["repo_id", "author", "files_per_repo", "library", "downloads_30d", "likes"] | |
filtered_data = filtered_data[columns_of_interest] | |
st.dataframe(filtered_data) | |
#with tab6: | |
if tab == "Model Cards": | |
st.header("Model cards") | |
columns_of_interest = ["has_model_index", "has_metadata", "has_text", "text_length"] | |
rows = data.shape[0] | |
rows_old = old_data.shape[0] | |
rows_old_old = old_old_data.shape[0] | |
cond = data["has_model_index"] | data["has_text"] | |
with_model_card = data[cond] | |
c_model_card = with_model_card.shape[0] | |
cond = old_data["has_model_index"] | old_data["has_text"] | |
with_model_card_old = old_data[cond] | |
c_model_card_old = with_model_card_old.shape[0] | |
cond = old_old_data["has_model_index"] | old_old_data["has_text"] | |
with_model_card_old_old = old_old_data[cond] | |
c_model_card_old_old = with_model_card_old_old.shape[0] | |
st.subheader("High-level metrics") | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.metric(label="# with model card file", value=c_model_card, delta=int(c_model_card-c_model_card_old)) | |
with col2: | |
curr_change, delta = change_and_delta(c_model_card_old_old, c_model_card_old, c_model_card) | |
st.metric(label="# with model card file change", value=curr_change, delta=delta) | |
with col3: | |
st.metric(label="# without model card file", value=rows-c_model_card, delta=int((rows-c_model_card)-(rows_old-c_model_card_old))) | |
with col4: | |
curr_change, delta = change_and_delta(rows_old_old-c_model_card_old_old, rows_old-c_model_card_old, rows-c_model_card) | |
st.metric(label="# without model card file change", value=curr_change, delta=delta) | |
with_index = data["has_model_index"].sum() | |
with_index_old = old_data["has_model_index"].sum() | |
with_index_old_old = old_old_data["has_model_index"].sum() | |
with col1: | |
st.metric(label="# with model index", value=with_index, delta=int(with_index-with_index_old)) | |
with col2: | |
curr_change, delta = change_and_delta(with_index_old_old, with_index_old, with_index) | |
st.metric(label="# with model index change", value=curr_change, delta=delta) | |
with col3: | |
st.metric(label="# without model index", value=rows-with_index, delta=int((rows-with_index)-(rows_old-with_index_old))) | |
with col4: | |
curr_change, delta = change_and_delta(rows_old_old-with_index_old_old, rows_old-with_index_old, rows-with_index) | |
st.metric(label="# without model index change", value=curr_change, delta=delta) | |
with_text = data["has_text"] | |
with_text_old = old_data["has_text"] | |
with_text_old_old = old_old_data["has_text"] | |
with_text_sum = with_text.sum() | |
with_text_old_sum = with_text_old.sum() | |
with_text_old_old_sum = with_text_old_old.sum() | |
with col1: | |
st.metric(label="# with model card text", value=with_text_sum, delta=int(with_text_sum-with_text_old_sum)) | |
with col2: | |
curr_change, delta = change_and_delta(with_text_old_old_sum, with_text_old_sum, with_text_sum) | |
st.metric(label="# with model card text change", value=curr_change, delta=delta) | |
with col3: | |
st.metric(label="# without card text", value=rows-with_text_sum, delta=int((rows-with_text_sum)-(with_text_old_sum))) | |
with col4: | |
curr_change, delta = change_and_delta(rows_old_old-with_text_old_old_sum, rows_old-with_text_old_sum, rows-with_text_sum) | |
st.metric(label="# without card text change", value=curr_change, delta=delta) | |
st.subheader("Length (chars) of model card content") | |
fig, _ = plt.subplots() | |
_ = data["length_bins"].value_counts().plot.bar() | |
st.metric(label="# average length of model card (chars)", value=data[with_text]["text_length"].mean()) | |
st.pyplot(fig) | |
st.subheader("Tags (Read more in Pipeline tab)") | |
tags = data["tags"].explode() | |
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() | |
st.write(alt.Chart(tags.head(30)).mark_bar().encode( | |
x='counts', | |
y=alt.X('tag', sort=None) | |
)) | |
#with tab7: | |
if tab == "Super Users": | |
st.header("Authors") | |
st.text("This info corresponds to the repos owned by the authors") | |
authors = data.groupby("author").sum().drop(["text_length", "Unnamed: 0"], axis=1).sort_values("downloads_30d", ascending=False) | |
d = data["author"].value_counts().rename_axis("author").to_frame('counts').reset_index() | |
final_data = pd.merge( | |
d, authors, how="outer", on="author" | |
) | |
st.dataframe(final_data) | |
#with tab2: | |
if tab == "Raw Data": | |
st.header("Raw Data") | |
d = data.astype(str) | |
st.dataframe(d) | |
if __name__ == '__main__': | |
main() | |