Yonatan-Bitton's picture
Update app.py (#5)
b25273d verified
import gradio as gr
import logging
import random
import os
from datasets import load_dataset
from huggingface_hub import login
try:
login()
except:
pass
auth_token = os.environ.get('HF_TOKEN', None)
try:
iiw_400 = load_dataset('google/imageinwords', token=auth_token, trust_remote_code=True, name="IIW-400")
docci_test = load_dataset('google/imageinwords', token=auth_token, trust_remote_code=True, name="DOCCI_Test")
locnar_eval = load_dataset('google/imageinwords', token=auth_token, trust_remote_code=True, name="LocNar_Eval")
cm_3600 = load_dataset('google/imageinwords', token=auth_token, trust_remote_code=True, name="CM_3600")
except Exception as e:
raise ValueError("could you fetch the datasets with error: %s", e)
_SELECTOR_TO_DATASET = {
"IIW-400": iiw_400,
"DOCCI_Test": docci_test,
"LocNar_Eval": locnar_eval,
"CM_3600": cm_3600
}
def display_iiw_data_with_slider_change(dataset_type, index):
dataset_split, image_key, image_url_key = "test", "image/key", "image/url"
if dataset_type == "LocNar_Eval":
dataset_split = "validation"
if dataset_type == "DOCCI_Test":
image_url_key = "image/thumbnail_url"
image_key = "image"
logging.debug(f"SELECTION: {dataset_type} : {dataset_split}: {index}")
data = _SELECTOR_TO_DATASET[dataset_type][dataset_split][index]
image_html = f'<img src="{data[image_url_key]}" style="width:100%; max-width:800px; height:auto;">'
image_key_html = f"<p style='font-size: 10px'>Image Key: {data[image_key]}</p>"
iiw_text, iiw_p5b_text, ratings = "", "", ""
if "IIW" in data:
iiw_text = f"<h2>IIW Human-Authored Descriptions</h2><p style='font-size: 16px'>{data['IIW']}</p>"
if "IIW-P5B" in data:
iiw_p5b_text = f"<h2>IIW PaLI-5B Generated Descriptions</h2><p style='font-size: 16px'>{data['IIW-P5B']}</p>"
if 'iiw-human-sxs-iiw-p5b' in data and data['iiw-human-sxs-iiw-p5b'] is not None:
ratings = "<h2>Ratings</h2>"
for key, value in data['iiw-human-sxs-iiw-p5b'].items():
key = key.split("metrics/")[-1]
emoji = ""
if key == "Comprehensiveness":
emoji = "πŸ“š" # Book
elif key == "Specificity":
emoji = "🎯" # Bullseye
elif key == "Hallucination":
emoji = "πŸ‘»" # Ghost
elif key == "First few line(s) as tldr":
emoji = "πŸ”" # Magnifying Glass Tilted Left
elif key == "Human Like":
emoji = "πŸ‘€" # Bust in Silhouette
ratings += f"<p style='font-size: 16px'>{emoji} <strong>{key}</strong>: {value}</p>"
return image_key_html, image_html, iiw_text, iiw_p5b_text, ratings
def display_iiw_data_with_dataset_change(dataset_type, index):
slider = gr.Slider(minimum=0, maximum=max_index(dataset_type)-1, label="Dataset Size", value=0)
image_key_html, image_html, iiw_text, iiw_p5b_text, ratings = display_iiw_data_with_slider_change(dataset_type, index=0)
return slider, image_key_html, image_html, iiw_text, iiw_p5b_text, ratings
def max_index(dataset_type):
dataset_split = "test"
if dataset_type == "LocNar_Eval":
dataset_split = "validation"
logging.debug(f"SELECTION: {dataset_type} : {dataset_split}")
dataset_instance =_SELECTOR_TO_DATASET[dataset_type][dataset_split]
return len(dataset_instance)
with gr.Blocks() as demo:
gr.Markdown("# ImageInWords: Unlocking Hyper-Detailed Image Descriptions")
gr.Markdown("Slide across the slider to see various examples across the different IIW datasets.")
with gr.Row():
dataset_selector = gr.Radio(["IIW-400", "DOCCI_Test", "LocNar_Eval", "CM_3600"], value="IIW-400", label="IIW Datasets")
slider, image_key_html, image_html, iiw_text, iiw_p5b_text, ratings = display_iiw_data_with_dataset_change(dataset_selector.value, index=0)
with gr.Row():
with gr.Column():
image_output = gr.HTML(image_html)
with gr.Column():
image_key_output = gr.HTML(image_key_html)
if iiw_text:
iiw_text_output = gr.HTML(iiw_text)
if iiw_p5b_text:
iiw_p5b_text_output = gr.HTML(iiw_p5b_text)
if ratings:
ratings_output = gr.HTML(ratings)
slider.change(display_iiw_data_with_slider_change, inputs=[dataset_selector, slider], outputs=[image_key_output, image_output, iiw_text_output, iiw_p5b_text_output, ratings_output])
dataset_selector.change(display_iiw_data_with_dataset_change, inputs=[dataset_selector, slider], outputs=[slider, image_key_output, image_output, iiw_text_output, iiw_p5b_text_output, ratings_output])
demo.launch(debug=True)