Spaces:
Paused
Paused
archiving, but i do hope we get somewhere with this!
Browse files
app.py
CHANGED
@@ -1,180 +1,180 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
import spaces
|
5 |
-
import torch
|
6 |
-
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
7 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
-
from gradio_imageslider import ImageSlider
|
10 |
-
from PIL import Image, ImageDraw, ImageFont
|
11 |
-
|
12 |
-
dtype = torch.bfloat16
|
13 |
-
#model_id = "black-forest-labs/FLUX.1-dev"
|
14 |
-
model_id = "camenduru/FLUX.1-dev-diffusers"
|
15 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
-
|
17 |
-
#taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
18 |
-
good_vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=dtype).to(device)
|
19 |
-
#pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=taef1).to(device)
|
20 |
-
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=good_vae).to(device)
|
21 |
-
torch.cuda.empty_cache()
|
22 |
-
|
23 |
-
MAX_SEED = np.iinfo(np.int32).max
|
24 |
-
MAX_IMAGE_SIZE = 2048
|
25 |
-
|
26 |
-
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
27 |
-
|
28 |
-
def get_cmp_image(im1: Image.Image, im2: Image.Image, sigmas: float):
|
29 |
-
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
|
30 |
-
dst.paste(im1.convert('RGB'), (0, 0))
|
31 |
-
dst.paste(im2.convert('RGB'), (im1.width, 0))
|
32 |
-
font = ImageFont.truetype('Roboto-Regular.ttf', 72, encoding='unic')
|
33 |
-
draw = ImageDraw.Draw(dst)
|
34 |
-
draw.text((64, im1.height - 128), 'Default Flux', 'red', font=font)
|
35 |
-
draw.text((im1.width + 64, im1.height - 128), f'Sigmas * factor {sigmas}', 'red', font=font)
|
36 |
-
return dst
|
37 |
-
|
38 |
-
@spaces.GPU(duration=90)
|
39 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, mul_sigmas=0.95, is_cmp=True, progress=gr.Progress(track_tqdm=True)):
|
40 |
-
if randomize_seed:
|
41 |
-
seed = random.randint(0, MAX_SEED)
|
42 |
-
generator = torch.Generator().manual_seed(seed)
|
43 |
-
|
44 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
45 |
-
sigmas = sigmas * mul_sigmas
|
46 |
-
|
47 |
-
image_sigmas = pipe(
|
48 |
-
prompt=prompt,
|
49 |
-
guidance_scale=guidance_scale,
|
50 |
-
num_inference_steps=num_inference_steps,
|
51 |
-
width=width,
|
52 |
-
height=height,
|
53 |
-
generator=generator,
|
54 |
-
output_type="pil",
|
55 |
-
sigmas=sigmas
|
56 |
-
).images[0]
|
57 |
-
|
58 |
-
if is_cmp:
|
59 |
-
image_def = pipe(
|
60 |
-
prompt=prompt,
|
61 |
-
guidance_scale=guidance_scale,
|
62 |
-
num_inference_steps=num_inference_steps,
|
63 |
-
width=width,
|
64 |
-
height=height,
|
65 |
-
generator=generator,
|
66 |
-
output_type="pil",
|
67 |
-
).images[0]
|
68 |
-
return [image_def, image_sigmas], get_cmp_image(image_def, image_sigmas, mul_sigmas), seed
|
69 |
-
else: return [image_sigmas, image_sigmas], None, seed
|
70 |
-
|
71 |
-
examples = [
|
72 |
-
"a tiny astronaut hatching from an egg on the moon",
|
73 |
-
"a cat holding a sign that says hello world",
|
74 |
-
"an anime illustration of a wiener schnitzel",
|
75 |
-
]
|
76 |
-
|
77 |
-
css="""
|
78 |
-
#col-container {
|
79 |
-
margin: 0 auto;
|
80 |
-
max-width: 520px;
|
81 |
-
}
|
82 |
-
"""
|
83 |
-
|
84 |
-
with gr.Blocks(css=css) as demo:
|
85 |
-
|
86 |
-
with gr.Column(elem_id="col-container"):
|
87 |
-
gr.Markdown(f"""# FLUX.1 [dev] sigmas test
|
88 |
-
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
89 |
-
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
90 |
-
""")
|
91 |
-
|
92 |
-
with gr.Row():
|
93 |
-
|
94 |
-
prompt = gr.Text(
|
95 |
-
label="Prompt",
|
96 |
-
show_label=False,
|
97 |
-
max_lines=1,
|
98 |
-
placeholder="Enter your prompt",
|
99 |
-
container=False,
|
100 |
-
)
|
101 |
-
|
102 |
-
run_button = gr.Button("Run", scale=0)
|
103 |
-
|
104 |
-
#result = gr.Image(label="Result", show_label=False)
|
105 |
-
result = ImageSlider(label="Result", show_label=False, type="pil", slider_color="pink")
|
106 |
-
result_cmp = gr.Image(label="Result (comparing)", show_label=False, type="pil", format="png", height=256, show_download_button=True, show_share_button=False)
|
107 |
-
|
108 |
-
with gr.Accordion("Advanced Settings", open=True):
|
109 |
-
with gr.Row():
|
110 |
-
sigmas = gr.Slider(
|
111 |
-
label="Sigmas",
|
112 |
-
minimum=0,
|
113 |
-
maximum=1.0,
|
114 |
-
step=0.01,
|
115 |
-
value=0.95,
|
116 |
-
)
|
117 |
-
is_cmp = gr.Checkbox(label="Compare images with/without sigmas", value=True)
|
118 |
-
|
119 |
-
seed = gr.Slider(
|
120 |
-
label="Seed",
|
121 |
-
minimum=0,
|
122 |
-
maximum=MAX_SEED,
|
123 |
-
step=1,
|
124 |
-
value=9119,
|
125 |
-
)
|
126 |
-
|
127 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
128 |
-
|
129 |
-
with gr.Row():
|
130 |
-
|
131 |
-
width = gr.Slider(
|
132 |
-
label="Width",
|
133 |
-
minimum=256,
|
134 |
-
maximum=MAX_IMAGE_SIZE,
|
135 |
-
step=32,
|
136 |
-
value=1024,
|
137 |
-
)
|
138 |
-
|
139 |
-
height = gr.Slider(
|
140 |
-
label="Height",
|
141 |
-
minimum=256,
|
142 |
-
maximum=MAX_IMAGE_SIZE,
|
143 |
-
step=32,
|
144 |
-
value=1024,
|
145 |
-
)
|
146 |
-
|
147 |
-
with gr.Row():
|
148 |
-
|
149 |
-
guidance_scale = gr.Slider(
|
150 |
-
label="Guidance Scale",
|
151 |
-
minimum=1,
|
152 |
-
maximum=15,
|
153 |
-
step=0.1,
|
154 |
-
value=3.5,
|
155 |
-
)
|
156 |
-
|
157 |
-
num_inference_steps = gr.Slider(
|
158 |
-
label="Number of inference steps",
|
159 |
-
minimum=1,
|
160 |
-
maximum=50,
|
161 |
-
step=1,
|
162 |
-
value=28,
|
163 |
-
)
|
164 |
-
|
165 |
-
gr.Examples(
|
166 |
-
examples = examples,
|
167 |
-
fn = infer,
|
168 |
-
inputs = [prompt],
|
169 |
-
outputs = [result, result_cmp, seed],
|
170 |
-
cache_examples="lazy"
|
171 |
-
)
|
172 |
-
|
173 |
-
gr.on(
|
174 |
-
triggers=[run_button.click, prompt.submit],
|
175 |
-
fn = infer,
|
176 |
-
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sigmas, is_cmp],
|
177 |
-
outputs = [result, result_cmp, seed]
|
178 |
-
)
|
179 |
-
|
180 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
# import spaces
|
5 |
+
import torch
|
6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
+
from gradio_imageslider import ImageSlider
|
10 |
+
from PIL import Image, ImageDraw, ImageFont
|
11 |
+
|
12 |
+
dtype = torch.bfloat16
|
13 |
+
#model_id = "black-forest-labs/FLUX.1-dev"
|
14 |
+
model_id = "camenduru/FLUX.1-dev-diffusers"
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
#taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
18 |
+
good_vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=dtype).to(device)
|
19 |
+
#pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=taef1).to(device)
|
20 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=good_vae).to(device)
|
21 |
+
torch.cuda.empty_cache()
|
22 |
+
|
23 |
+
MAX_SEED = np.iinfo(np.int32).max
|
24 |
+
MAX_IMAGE_SIZE = 2048
|
25 |
+
|
26 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
27 |
+
|
28 |
+
def get_cmp_image(im1: Image.Image, im2: Image.Image, sigmas: float):
|
29 |
+
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
|
30 |
+
dst.paste(im1.convert('RGB'), (0, 0))
|
31 |
+
dst.paste(im2.convert('RGB'), (im1.width, 0))
|
32 |
+
font = ImageFont.truetype('Roboto-Regular.ttf', 72, encoding='unic')
|
33 |
+
draw = ImageDraw.Draw(dst)
|
34 |
+
draw.text((64, im1.height - 128), 'Default Flux', 'red', font=font)
|
35 |
+
draw.text((im1.width + 64, im1.height - 128), f'Sigmas * factor {sigmas}', 'red', font=font)
|
36 |
+
return dst
|
37 |
+
|
38 |
+
# @spaces.GPU(duration=90)
|
39 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, mul_sigmas=0.95, is_cmp=True, progress=gr.Progress(track_tqdm=True)):
|
40 |
+
if randomize_seed:
|
41 |
+
seed = random.randint(0, MAX_SEED)
|
42 |
+
generator = torch.Generator().manual_seed(seed)
|
43 |
+
|
44 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
45 |
+
sigmas = sigmas * mul_sigmas
|
46 |
+
|
47 |
+
image_sigmas = pipe(
|
48 |
+
prompt=prompt,
|
49 |
+
guidance_scale=guidance_scale,
|
50 |
+
num_inference_steps=num_inference_steps,
|
51 |
+
width=width,
|
52 |
+
height=height,
|
53 |
+
generator=generator,
|
54 |
+
output_type="pil",
|
55 |
+
sigmas=sigmas
|
56 |
+
).images[0]
|
57 |
+
|
58 |
+
if is_cmp:
|
59 |
+
image_def = pipe(
|
60 |
+
prompt=prompt,
|
61 |
+
guidance_scale=guidance_scale,
|
62 |
+
num_inference_steps=num_inference_steps,
|
63 |
+
width=width,
|
64 |
+
height=height,
|
65 |
+
generator=generator,
|
66 |
+
output_type="pil",
|
67 |
+
).images[0]
|
68 |
+
return [image_def, image_sigmas], get_cmp_image(image_def, image_sigmas, mul_sigmas), seed
|
69 |
+
else: return [image_sigmas, image_sigmas], None, seed
|
70 |
+
|
71 |
+
examples = [
|
72 |
+
"a tiny astronaut hatching from an egg on the moon",
|
73 |
+
"a cat holding a sign that says hello world",
|
74 |
+
"an anime illustration of a wiener schnitzel",
|
75 |
+
]
|
76 |
+
|
77 |
+
css="""
|
78 |
+
#col-container {
|
79 |
+
margin: 0 auto;
|
80 |
+
max-width: 520px;
|
81 |
+
}
|
82 |
+
"""
|
83 |
+
|
84 |
+
with gr.Blocks(css=css) as demo:
|
85 |
+
|
86 |
+
with gr.Column(elem_id="col-container"):
|
87 |
+
gr.Markdown(f"""# FLUX.1 [dev] sigmas test
|
88 |
+
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
89 |
+
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
90 |
+
""")
|
91 |
+
|
92 |
+
with gr.Row():
|
93 |
+
|
94 |
+
prompt = gr.Text(
|
95 |
+
label="Prompt",
|
96 |
+
show_label=False,
|
97 |
+
max_lines=1,
|
98 |
+
placeholder="Enter your prompt",
|
99 |
+
container=False,
|
100 |
+
)
|
101 |
+
|
102 |
+
run_button = gr.Button("Run", scale=0)
|
103 |
+
|
104 |
+
#result = gr.Image(label="Result", show_label=False)
|
105 |
+
result = ImageSlider(label="Result", show_label=False, type="pil", slider_color="pink")
|
106 |
+
result_cmp = gr.Image(label="Result (comparing)", show_label=False, type="pil", format="png", height=256, show_download_button=True, show_share_button=False)
|
107 |
+
|
108 |
+
with gr.Accordion("Advanced Settings", open=True):
|
109 |
+
with gr.Row():
|
110 |
+
sigmas = gr.Slider(
|
111 |
+
label="Sigmas",
|
112 |
+
minimum=0,
|
113 |
+
maximum=1.0,
|
114 |
+
step=0.01,
|
115 |
+
value=0.95,
|
116 |
+
)
|
117 |
+
is_cmp = gr.Checkbox(label="Compare images with/without sigmas", value=True)
|
118 |
+
|
119 |
+
seed = gr.Slider(
|
120 |
+
label="Seed",
|
121 |
+
minimum=0,
|
122 |
+
maximum=MAX_SEED,
|
123 |
+
step=1,
|
124 |
+
value=9119,
|
125 |
+
)
|
126 |
+
|
127 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
128 |
+
|
129 |
+
with gr.Row():
|
130 |
+
|
131 |
+
width = gr.Slider(
|
132 |
+
label="Width",
|
133 |
+
minimum=256,
|
134 |
+
maximum=MAX_IMAGE_SIZE,
|
135 |
+
step=32,
|
136 |
+
value=1024,
|
137 |
+
)
|
138 |
+
|
139 |
+
height = gr.Slider(
|
140 |
+
label="Height",
|
141 |
+
minimum=256,
|
142 |
+
maximum=MAX_IMAGE_SIZE,
|
143 |
+
step=32,
|
144 |
+
value=1024,
|
145 |
+
)
|
146 |
+
|
147 |
+
with gr.Row():
|
148 |
+
|
149 |
+
guidance_scale = gr.Slider(
|
150 |
+
label="Guidance Scale",
|
151 |
+
minimum=1,
|
152 |
+
maximum=15,
|
153 |
+
step=0.1,
|
154 |
+
value=3.5,
|
155 |
+
)
|
156 |
+
|
157 |
+
num_inference_steps = gr.Slider(
|
158 |
+
label="Number of inference steps",
|
159 |
+
minimum=1,
|
160 |
+
maximum=50,
|
161 |
+
step=1,
|
162 |
+
value=28,
|
163 |
+
)
|
164 |
+
|
165 |
+
gr.Examples(
|
166 |
+
examples = examples,
|
167 |
+
fn = infer,
|
168 |
+
inputs = [prompt],
|
169 |
+
outputs = [result, result_cmp, seed],
|
170 |
+
cache_examples="lazy"
|
171 |
+
)
|
172 |
+
|
173 |
+
gr.on(
|
174 |
+
triggers=[run_button.click, prompt.submit],
|
175 |
+
fn = infer,
|
176 |
+
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sigmas, is_cmp],
|
177 |
+
outputs = [result, result_cmp, seed]
|
178 |
+
)
|
179 |
+
|
180 |
demo.launch()
|