Spaces:
Runtime error
Runtime error
wsntxxn
commited on
Commit
·
487e498
1
Parent(s):
df7102c
Update Clotho model
Browse files- app.py +42 -38
- checkpoints/clotho/ckpt.pth +3 -0
- checkpoints/clotho/config.yaml +30 -0
- models/eff_latent_encoder.py +1 -1
- utils/model_util.py +1 -1
- utils/train_util.py +1 -1
app.py
CHANGED
@@ -23,7 +23,7 @@ def load_model(cfg,
|
|
23 |
return model, tokenizer
|
24 |
|
25 |
|
26 |
-
def infer(file,
|
27 |
sr, wav = file
|
28 |
wav = torch.as_tensor(wav)
|
29 |
if wav.dtype == torch.short:
|
@@ -32,9 +32,9 @@ def infer(file, device, model, tokenizer, target_sr):
|
|
32 |
wav = wav / 2 ** 31
|
33 |
if wav.ndim > 1:
|
34 |
wav = wav.mean(1)
|
35 |
-
wav = resample(wav, sr, target_sr)
|
36 |
wav_len = len(wav)
|
37 |
-
wav = wav.float().unsqueeze(0).to(device)
|
38 |
input_dict = {
|
39 |
"mode": "inference",
|
40 |
"wav": wav,
|
@@ -44,9 +44,9 @@ def infer(file, device, model, tokenizer, target_sr):
|
|
44 |
"beam_size": 3,
|
45 |
}
|
46 |
with torch.no_grad():
|
47 |
-
output_dict = model(input_dict)
|
48 |
seq = output_dict["seq"].cpu().numpy()
|
49 |
-
cap = tokenizer.decode(seq)[0]
|
50 |
return cap
|
51 |
|
52 |
# def input_toggle(input_type):
|
@@ -55,43 +55,47 @@ def infer(file, device, model, tokenizer, target_sr):
|
|
55 |
# elif input_type == "mic":
|
56 |
# return gr.update(visible=False), gr.update(visible=True)
|
57 |
|
|
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
63 |
|
64 |
-
args = parser.parse_args()
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
target_sr = cfg["target_sr"]
|
70 |
-
model, tokenizer = load_model(cfg, exp_dir / "ckpt.pth", device)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
file = gr.Audio(label="Input", visible=True)
|
81 |
-
# mic = gr.Microphone(label="Input", visible=False)
|
82 |
-
# radio.change(fn=input_toggle, inputs=radio, outputs=[file, mic])
|
83 |
-
btn = gr.Button("Run")
|
84 |
-
with gr.Column():
|
85 |
-
output = gr.Textbox(label="Output")
|
86 |
-
btn.click(
|
87 |
-
fn=partial(infer,
|
88 |
-
device=device,
|
89 |
-
model=model,
|
90 |
-
tokenizer=tokenizer,
|
91 |
-
target_sr=target_sr),
|
92 |
-
inputs=[file,],
|
93 |
-
outputs=output
|
94 |
)
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
|
|
23 |
return model, tokenizer
|
24 |
|
25 |
|
26 |
+
def infer(file, runner):
|
27 |
sr, wav = file
|
28 |
wav = torch.as_tensor(wav)
|
29 |
if wav.dtype == torch.short:
|
|
|
32 |
wav = wav / 2 ** 31
|
33 |
if wav.ndim > 1:
|
34 |
wav = wav.mean(1)
|
35 |
+
wav = resample(wav, sr, runner.target_sr)
|
36 |
wav_len = len(wav)
|
37 |
+
wav = wav.float().unsqueeze(0).to(runner.device)
|
38 |
input_dict = {
|
39 |
"mode": "inference",
|
40 |
"wav": wav,
|
|
|
44 |
"beam_size": 3,
|
45 |
}
|
46 |
with torch.no_grad():
|
47 |
+
output_dict = runner.model(input_dict)
|
48 |
seq = output_dict["seq"].cpu().numpy()
|
49 |
+
cap = runner.tokenizer.decode(seq)[0]
|
50 |
return cap
|
51 |
|
52 |
# def input_toggle(input_type):
|
|
|
55 |
# elif input_type == "mic":
|
56 |
# return gr.update(visible=False), gr.update(visible=True)
|
57 |
|
58 |
+
class InferRunner:
|
59 |
|
60 |
+
def __init__(self, model_name):
|
61 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
62 |
+
exp_dir = Path(f"./checkpoints/{model_name.lower()}")
|
63 |
+
cfg = train_util.load_config(exp_dir / "config.yaml")
|
64 |
+
self.model, self.tokenizer = load_model(cfg, exp_dir / "ckpt.pth", self.device)
|
65 |
+
self.target_sr = cfg["target_sr"]
|
66 |
|
67 |
+
def change_model(self, model_name):
|
68 |
+
exp_dir = Path(f"./checkpoints/{model_name.lower()}")
|
69 |
+
cfg = train_util.load_config(exp_dir / "config.yaml")
|
70 |
+
self.model, self.tokenizer = load_model(cfg, exp_dir / "ckpt.pth", self.device)
|
71 |
+
self.target_sr = cfg["target_sr"]
|
72 |
|
|
|
73 |
|
74 |
+
def change_model(radio):
|
75 |
+
global infer_runner
|
76 |
+
infer_runner.change_model(radio)
|
|
|
|
|
77 |
|
78 |
+
|
79 |
+
with gr.Blocks() as demo:
|
80 |
+
with gr.Row():
|
81 |
+
with gr.Column():
|
82 |
+
radio = gr.Radio(
|
83 |
+
["AudioCaps", "Clotho"],
|
84 |
+
value="AudioCaps",
|
85 |
+
label="Select model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
)
|
87 |
+
infer_runner = InferRunner(radio.value)
|
88 |
+
file = gr.Audio(label="Input", visible=True)
|
89 |
+
radio.change(fn=change_model, inputs=[radio,],)
|
90 |
+
btn = gr.Button("Run")
|
91 |
+
with gr.Column():
|
92 |
+
output = gr.Textbox(label="Output")
|
93 |
+
btn.click(
|
94 |
+
fn=partial(infer,
|
95 |
+
runner=infer_runner),
|
96 |
+
inputs=[file,],
|
97 |
+
outputs=output
|
98 |
+
)
|
99 |
+
|
100 |
+
demo.launch()
|
101 |
|
checkpoints/clotho/ckpt.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:694c9e7139be7ec5aff2153d1af980d6bc305403a76be0d8940481579ea51483
|
3 |
+
size 54651005
|
checkpoints/clotho/config.yaml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tokenizer:
|
2 |
+
type: text_tokenizer.DictTokenizer
|
3 |
+
args:
|
4 |
+
max_length: 20
|
5 |
+
|
6 |
+
target_sr: 16000
|
7 |
+
|
8 |
+
model:
|
9 |
+
args:
|
10 |
+
shared_dim: 1024
|
11 |
+
tchr_dim: 768
|
12 |
+
model:
|
13 |
+
args: {}
|
14 |
+
decoder:
|
15 |
+
args:
|
16 |
+
attn_emb_dim: 1408
|
17 |
+
dropout: 0.2
|
18 |
+
emb_dim: 256
|
19 |
+
fc_emb_dim: 1408
|
20 |
+
nlayers: 2
|
21 |
+
tie_weights: true
|
22 |
+
vocab_size: 4368
|
23 |
+
type: models.transformer_decoder.TransformerDecoder
|
24 |
+
encoder:
|
25 |
+
args:
|
26 |
+
freeze: false
|
27 |
+
pretrained: true
|
28 |
+
type: models.cnn_encoder.EfficientNetB2
|
29 |
+
type: models.transformer_model.TransformerModel
|
30 |
+
type: models.kd_wrapper.ContraEncoderKdWrapper
|
models/eff_latent_encoder.py
CHANGED
@@ -17,7 +17,7 @@ from einops import rearrange, reduce
|
|
17 |
from torch.hub import load_state_dict_from_url
|
18 |
|
19 |
|
20 |
-
model_dir =
|
21 |
|
22 |
|
23 |
class _EffiNet(nn.Module):
|
|
|
17 |
from torch.hub import load_state_dict_from_url
|
18 |
|
19 |
|
20 |
+
model_dir = os.getcwd()
|
21 |
|
22 |
|
23 |
class _EffiNet(nn.Module):
|
utils/model_util.py
CHANGED
@@ -11,7 +11,7 @@ def sort_pack_padded_sequence(input, lengths):
|
|
11 |
sorted_lengths, indices = torch.sort(lengths, descending=True)
|
12 |
tmp = pack_padded_sequence(input[indices], sorted_lengths.cpu(), batch_first=True)
|
13 |
inv_ix = indices.clone()
|
14 |
-
inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix)
|
15 |
return tmp, inv_ix
|
16 |
|
17 |
def pad_unsort_packed_sequence(input, inv_ix):
|
|
|
11 |
sorted_lengths, indices = torch.sort(lengths, descending=True)
|
12 |
tmp = pack_padded_sequence(input[indices], sorted_lengths.cpu(), batch_first=True)
|
13 |
inv_ix = indices.clone()
|
14 |
+
inv_ix[indices] = torch.arange(0, len(indices)).type_as(inv_ix)
|
15 |
return tmp, inv_ix
|
16 |
|
17 |
def pad_unsort_packed_sequence(input, inv_ix):
|
utils/train_util.py
CHANGED
@@ -80,7 +80,7 @@ def merge_load_state_dict(state_dict,
|
|
80 |
pretrained_dict[key] = value
|
81 |
else:
|
82 |
mismatch_keys.append(key)
|
83 |
-
output_fn(f"Loading pre-trained model, with mismatched keys {mismatch_keys}")
|
84 |
model_dict.update(pretrained_dict)
|
85 |
model.load_state_dict(model_dict, strict=True)
|
86 |
return pretrained_dict.keys()
|
|
|
80 |
pretrained_dict[key] = value
|
81 |
else:
|
82 |
mismatch_keys.append(key)
|
83 |
+
output_fn(f"Loading pre-trained model, with mismatched keys {mismatch_keys}\n")
|
84 |
model_dict.update(pretrained_dict)
|
85 |
model.load_state_dict(model_dict, strict=True)
|
86 |
return pretrained_dict.keys()
|