Spaces:
Paused
Paused
Upload 3 files
Browse files- models/attention.py +1245 -0
- models/resampler.py +304 -0
- models/transformer_sd3.py +375 -0
models/attention.py
ADDED
@@ -0,0 +1,1245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, List, Optional, Tuple
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.utils import deprecate, logging
|
21 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
22 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU
|
23 |
+
from diffusers.models.attention_processor import Attention, JointAttnProcessor2_0
|
24 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
25 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
32 |
+
# "feed_forward_chunk_size" can be used to save memory
|
33 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
34 |
+
raise ValueError(
|
35 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
36 |
+
)
|
37 |
+
|
38 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
39 |
+
ff_output = torch.cat(
|
40 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
41 |
+
dim=chunk_dim,
|
42 |
+
)
|
43 |
+
return ff_output
|
44 |
+
|
45 |
+
|
46 |
+
@maybe_allow_in_graph
|
47 |
+
class GatedSelfAttentionDense(nn.Module):
|
48 |
+
r"""
|
49 |
+
A gated self-attention dense layer that combines visual features and object features.
|
50 |
+
|
51 |
+
Parameters:
|
52 |
+
query_dim (`int`): The number of channels in the query.
|
53 |
+
context_dim (`int`): The number of channels in the context.
|
54 |
+
n_heads (`int`): The number of heads to use for attention.
|
55 |
+
d_head (`int`): The number of channels in each head.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
62 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
63 |
+
|
64 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
65 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
66 |
+
|
67 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
68 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
69 |
+
|
70 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
71 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
72 |
+
|
73 |
+
self.enabled = True
|
74 |
+
|
75 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
76 |
+
if not self.enabled:
|
77 |
+
return x
|
78 |
+
|
79 |
+
n_visual = x.shape[1]
|
80 |
+
objs = self.linear(objs)
|
81 |
+
|
82 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
83 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
84 |
+
|
85 |
+
return x
|
86 |
+
|
87 |
+
|
88 |
+
@maybe_allow_in_graph
|
89 |
+
class JointTransformerBlock(nn.Module):
|
90 |
+
r"""
|
91 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
92 |
+
|
93 |
+
Reference: https://arxiv.org/abs/2403.03206
|
94 |
+
|
95 |
+
Parameters:
|
96 |
+
dim (`int`): The number of channels in the input and output.
|
97 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
98 |
+
attention_head_dim (`int`): The number of channels in each head.
|
99 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
100 |
+
processing of `context` conditions.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
dim: int,
|
106 |
+
num_attention_heads: int,
|
107 |
+
attention_head_dim: int,
|
108 |
+
context_pre_only: bool = False,
|
109 |
+
qk_norm: Optional[str] = None,
|
110 |
+
use_dual_attention: bool = False,
|
111 |
+
):
|
112 |
+
super().__init__()
|
113 |
+
|
114 |
+
self.use_dual_attention = use_dual_attention
|
115 |
+
self.context_pre_only = context_pre_only
|
116 |
+
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
|
117 |
+
|
118 |
+
if use_dual_attention:
|
119 |
+
self.norm1 = SD35AdaLayerNormZeroX(dim)
|
120 |
+
else:
|
121 |
+
self.norm1 = AdaLayerNormZero(dim)
|
122 |
+
|
123 |
+
if context_norm_type == "ada_norm_continous":
|
124 |
+
self.norm1_context = AdaLayerNormContinuous(
|
125 |
+
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
|
126 |
+
)
|
127 |
+
elif context_norm_type == "ada_norm_zero":
|
128 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
129 |
+
else:
|
130 |
+
raise ValueError(
|
131 |
+
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
|
132 |
+
)
|
133 |
+
|
134 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
135 |
+
processor = JointAttnProcessor2_0()
|
136 |
+
else:
|
137 |
+
raise ValueError(
|
138 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
139 |
+
)
|
140 |
+
|
141 |
+
self.attn = Attention(
|
142 |
+
query_dim=dim,
|
143 |
+
cross_attention_dim=None,
|
144 |
+
added_kv_proj_dim=dim,
|
145 |
+
dim_head=attention_head_dim,
|
146 |
+
heads=num_attention_heads,
|
147 |
+
out_dim=dim,
|
148 |
+
context_pre_only=context_pre_only,
|
149 |
+
bias=True,
|
150 |
+
processor=processor,
|
151 |
+
qk_norm=qk_norm,
|
152 |
+
eps=1e-6,
|
153 |
+
)
|
154 |
+
|
155 |
+
if use_dual_attention:
|
156 |
+
self.attn2 = Attention(
|
157 |
+
query_dim=dim,
|
158 |
+
cross_attention_dim=None,
|
159 |
+
dim_head=attention_head_dim,
|
160 |
+
heads=num_attention_heads,
|
161 |
+
out_dim=dim,
|
162 |
+
bias=True,
|
163 |
+
processor=processor,
|
164 |
+
qk_norm=qk_norm,
|
165 |
+
eps=1e-6,
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
self.attn2 = None
|
169 |
+
|
170 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
171 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
172 |
+
|
173 |
+
if not context_pre_only:
|
174 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
175 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
176 |
+
else:
|
177 |
+
self.norm2_context = None
|
178 |
+
self.ff_context = None
|
179 |
+
|
180 |
+
# let chunk size default to None
|
181 |
+
self._chunk_size = None
|
182 |
+
self._chunk_dim = 0
|
183 |
+
|
184 |
+
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
|
185 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
186 |
+
# Sets chunk feed-forward
|
187 |
+
self._chunk_size = chunk_size
|
188 |
+
self._chunk_dim = dim
|
189 |
+
|
190 |
+
def forward(
|
191 |
+
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor,
|
192 |
+
joint_attention_kwargs=None,
|
193 |
+
):
|
194 |
+
if self.use_dual_attention:
|
195 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
|
196 |
+
hidden_states, emb=temb
|
197 |
+
)
|
198 |
+
else:
|
199 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
200 |
+
|
201 |
+
if self.context_pre_only:
|
202 |
+
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
|
203 |
+
else:
|
204 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
205 |
+
encoder_hidden_states, emb=temb
|
206 |
+
)
|
207 |
+
|
208 |
+
# Attention.
|
209 |
+
attn_output, context_attn_output = self.attn(
|
210 |
+
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states,
|
211 |
+
**({} if joint_attention_kwargs is None else joint_attention_kwargs),
|
212 |
+
)
|
213 |
+
|
214 |
+
# Process attention outputs for the `hidden_states`.
|
215 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
216 |
+
hidden_states = hidden_states + attn_output
|
217 |
+
|
218 |
+
if self.use_dual_attention:
|
219 |
+
attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **({} if joint_attention_kwargs is None else joint_attention_kwargs),)
|
220 |
+
attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
|
221 |
+
hidden_states = hidden_states + attn_output2
|
222 |
+
|
223 |
+
norm_hidden_states = self.norm2(hidden_states)
|
224 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
225 |
+
if self._chunk_size is not None:
|
226 |
+
# "feed_forward_chunk_size" can be used to save memory
|
227 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
228 |
+
else:
|
229 |
+
ff_output = self.ff(norm_hidden_states)
|
230 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
231 |
+
|
232 |
+
hidden_states = hidden_states + ff_output
|
233 |
+
|
234 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
235 |
+
if self.context_pre_only:
|
236 |
+
encoder_hidden_states = None
|
237 |
+
else:
|
238 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
239 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
240 |
+
|
241 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
242 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
243 |
+
if self._chunk_size is not None:
|
244 |
+
# "feed_forward_chunk_size" can be used to save memory
|
245 |
+
context_ff_output = _chunked_feed_forward(
|
246 |
+
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
|
247 |
+
)
|
248 |
+
else:
|
249 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
250 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
251 |
+
|
252 |
+
return encoder_hidden_states, hidden_states
|
253 |
+
|
254 |
+
|
255 |
+
@maybe_allow_in_graph
|
256 |
+
class BasicTransformerBlock(nn.Module):
|
257 |
+
r"""
|
258 |
+
A basic Transformer block.
|
259 |
+
|
260 |
+
Parameters:
|
261 |
+
dim (`int`): The number of channels in the input and output.
|
262 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
263 |
+
attention_head_dim (`int`): The number of channels in each head.
|
264 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
265 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
266 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
267 |
+
num_embeds_ada_norm (:
|
268 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
269 |
+
attention_bias (:
|
270 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
271 |
+
only_cross_attention (`bool`, *optional*):
|
272 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
273 |
+
double_self_attention (`bool`, *optional*):
|
274 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
275 |
+
upcast_attention (`bool`, *optional*):
|
276 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
277 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
278 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
279 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
280 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
281 |
+
final_dropout (`bool` *optional*, defaults to False):
|
282 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
283 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
284 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
285 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
286 |
+
The type of positional embeddings to apply to.
|
287 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
288 |
+
The maximum number of positional embeddings to apply.
|
289 |
+
"""
|
290 |
+
|
291 |
+
def __init__(
|
292 |
+
self,
|
293 |
+
dim: int,
|
294 |
+
num_attention_heads: int,
|
295 |
+
attention_head_dim: int,
|
296 |
+
dropout=0.0,
|
297 |
+
cross_attention_dim: Optional[int] = None,
|
298 |
+
activation_fn: str = "geglu",
|
299 |
+
num_embeds_ada_norm: Optional[int] = None,
|
300 |
+
attention_bias: bool = False,
|
301 |
+
only_cross_attention: bool = False,
|
302 |
+
double_self_attention: bool = False,
|
303 |
+
upcast_attention: bool = False,
|
304 |
+
norm_elementwise_affine: bool = True,
|
305 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
306 |
+
norm_eps: float = 1e-5,
|
307 |
+
final_dropout: bool = False,
|
308 |
+
attention_type: str = "default",
|
309 |
+
positional_embeddings: Optional[str] = None,
|
310 |
+
num_positional_embeddings: Optional[int] = None,
|
311 |
+
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
312 |
+
ada_norm_bias: Optional[int] = None,
|
313 |
+
ff_inner_dim: Optional[int] = None,
|
314 |
+
ff_bias: bool = True,
|
315 |
+
attention_out_bias: bool = True,
|
316 |
+
):
|
317 |
+
super().__init__()
|
318 |
+
self.dim = dim
|
319 |
+
self.num_attention_heads = num_attention_heads
|
320 |
+
self.attention_head_dim = attention_head_dim
|
321 |
+
self.dropout = dropout
|
322 |
+
self.cross_attention_dim = cross_attention_dim
|
323 |
+
self.activation_fn = activation_fn
|
324 |
+
self.attention_bias = attention_bias
|
325 |
+
self.double_self_attention = double_self_attention
|
326 |
+
self.norm_elementwise_affine = norm_elementwise_affine
|
327 |
+
self.positional_embeddings = positional_embeddings
|
328 |
+
self.num_positional_embeddings = num_positional_embeddings
|
329 |
+
self.only_cross_attention = only_cross_attention
|
330 |
+
|
331 |
+
# We keep these boolean flags for backward-compatibility.
|
332 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
333 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
334 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
335 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
336 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
337 |
+
|
338 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
339 |
+
raise ValueError(
|
340 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
341 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
342 |
+
)
|
343 |
+
|
344 |
+
self.norm_type = norm_type
|
345 |
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
346 |
+
|
347 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
348 |
+
raise ValueError(
|
349 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
350 |
+
)
|
351 |
+
|
352 |
+
if positional_embeddings == "sinusoidal":
|
353 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
354 |
+
else:
|
355 |
+
self.pos_embed = None
|
356 |
+
|
357 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
358 |
+
# 1. Self-Attn
|
359 |
+
if norm_type == "ada_norm":
|
360 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
361 |
+
elif norm_type == "ada_norm_zero":
|
362 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
363 |
+
elif norm_type == "ada_norm_continuous":
|
364 |
+
self.norm1 = AdaLayerNormContinuous(
|
365 |
+
dim,
|
366 |
+
ada_norm_continous_conditioning_embedding_dim,
|
367 |
+
norm_elementwise_affine,
|
368 |
+
norm_eps,
|
369 |
+
ada_norm_bias,
|
370 |
+
"rms_norm",
|
371 |
+
)
|
372 |
+
else:
|
373 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
374 |
+
|
375 |
+
self.attn1 = Attention(
|
376 |
+
query_dim=dim,
|
377 |
+
heads=num_attention_heads,
|
378 |
+
dim_head=attention_head_dim,
|
379 |
+
dropout=dropout,
|
380 |
+
bias=attention_bias,
|
381 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
382 |
+
upcast_attention=upcast_attention,
|
383 |
+
out_bias=attention_out_bias,
|
384 |
+
)
|
385 |
+
|
386 |
+
# 2. Cross-Attn
|
387 |
+
if cross_attention_dim is not None or double_self_attention:
|
388 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
389 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
390 |
+
# the second cross attention block.
|
391 |
+
if norm_type == "ada_norm":
|
392 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
393 |
+
elif norm_type == "ada_norm_continuous":
|
394 |
+
self.norm2 = AdaLayerNormContinuous(
|
395 |
+
dim,
|
396 |
+
ada_norm_continous_conditioning_embedding_dim,
|
397 |
+
norm_elementwise_affine,
|
398 |
+
norm_eps,
|
399 |
+
ada_norm_bias,
|
400 |
+
"rms_norm",
|
401 |
+
)
|
402 |
+
else:
|
403 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
404 |
+
|
405 |
+
self.attn2 = Attention(
|
406 |
+
query_dim=dim,
|
407 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
408 |
+
heads=num_attention_heads,
|
409 |
+
dim_head=attention_head_dim,
|
410 |
+
dropout=dropout,
|
411 |
+
bias=attention_bias,
|
412 |
+
upcast_attention=upcast_attention,
|
413 |
+
out_bias=attention_out_bias,
|
414 |
+
) # is self-attn if encoder_hidden_states is none
|
415 |
+
else:
|
416 |
+
if norm_type == "ada_norm_single": # For Latte
|
417 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
418 |
+
else:
|
419 |
+
self.norm2 = None
|
420 |
+
self.attn2 = None
|
421 |
+
|
422 |
+
# 3. Feed-forward
|
423 |
+
if norm_type == "ada_norm_continuous":
|
424 |
+
self.norm3 = AdaLayerNormContinuous(
|
425 |
+
dim,
|
426 |
+
ada_norm_continous_conditioning_embedding_dim,
|
427 |
+
norm_elementwise_affine,
|
428 |
+
norm_eps,
|
429 |
+
ada_norm_bias,
|
430 |
+
"layer_norm",
|
431 |
+
)
|
432 |
+
|
433 |
+
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]:
|
434 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
435 |
+
elif norm_type == "layer_norm_i2vgen":
|
436 |
+
self.norm3 = None
|
437 |
+
|
438 |
+
self.ff = FeedForward(
|
439 |
+
dim,
|
440 |
+
dropout=dropout,
|
441 |
+
activation_fn=activation_fn,
|
442 |
+
final_dropout=final_dropout,
|
443 |
+
inner_dim=ff_inner_dim,
|
444 |
+
bias=ff_bias,
|
445 |
+
)
|
446 |
+
|
447 |
+
# 4. Fuser
|
448 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
449 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
450 |
+
|
451 |
+
# 5. Scale-shift for PixArt-Alpha.
|
452 |
+
if norm_type == "ada_norm_single":
|
453 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
454 |
+
|
455 |
+
# let chunk size default to None
|
456 |
+
self._chunk_size = None
|
457 |
+
self._chunk_dim = 0
|
458 |
+
|
459 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
460 |
+
# Sets chunk feed-forward
|
461 |
+
self._chunk_size = chunk_size
|
462 |
+
self._chunk_dim = dim
|
463 |
+
|
464 |
+
def forward(
|
465 |
+
self,
|
466 |
+
hidden_states: torch.Tensor,
|
467 |
+
attention_mask: Optional[torch.Tensor] = None,
|
468 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
469 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
470 |
+
timestep: Optional[torch.LongTensor] = None,
|
471 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
472 |
+
class_labels: Optional[torch.LongTensor] = None,
|
473 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
474 |
+
) -> torch.Tensor:
|
475 |
+
if cross_attention_kwargs is not None:
|
476 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
477 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
478 |
+
|
479 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
480 |
+
# 0. Self-Attention
|
481 |
+
batch_size = hidden_states.shape[0]
|
482 |
+
|
483 |
+
if self.norm_type == "ada_norm":
|
484 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
485 |
+
elif self.norm_type == "ada_norm_zero":
|
486 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
487 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
488 |
+
)
|
489 |
+
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
490 |
+
norm_hidden_states = self.norm1(hidden_states)
|
491 |
+
elif self.norm_type == "ada_norm_continuous":
|
492 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
493 |
+
elif self.norm_type == "ada_norm_single":
|
494 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
495 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
496 |
+
).chunk(6, dim=1)
|
497 |
+
norm_hidden_states = self.norm1(hidden_states)
|
498 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
499 |
+
else:
|
500 |
+
raise ValueError("Incorrect norm used")
|
501 |
+
|
502 |
+
if self.pos_embed is not None:
|
503 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
504 |
+
|
505 |
+
# 1. Prepare GLIGEN inputs
|
506 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
507 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
508 |
+
|
509 |
+
attn_output = self.attn1(
|
510 |
+
norm_hidden_states,
|
511 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
512 |
+
attention_mask=attention_mask,
|
513 |
+
**cross_attention_kwargs,
|
514 |
+
)
|
515 |
+
|
516 |
+
if self.norm_type == "ada_norm_zero":
|
517 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
518 |
+
elif self.norm_type == "ada_norm_single":
|
519 |
+
attn_output = gate_msa * attn_output
|
520 |
+
|
521 |
+
hidden_states = attn_output + hidden_states
|
522 |
+
if hidden_states.ndim == 4:
|
523 |
+
hidden_states = hidden_states.squeeze(1)
|
524 |
+
|
525 |
+
# 1.2 GLIGEN Control
|
526 |
+
if gligen_kwargs is not None:
|
527 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
528 |
+
|
529 |
+
# 3. Cross-Attention
|
530 |
+
if self.attn2 is not None:
|
531 |
+
if self.norm_type == "ada_norm":
|
532 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
533 |
+
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
534 |
+
norm_hidden_states = self.norm2(hidden_states)
|
535 |
+
elif self.norm_type == "ada_norm_single":
|
536 |
+
# For PixArt norm2 isn't applied here:
|
537 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
538 |
+
norm_hidden_states = hidden_states
|
539 |
+
elif self.norm_type == "ada_norm_continuous":
|
540 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
541 |
+
else:
|
542 |
+
raise ValueError("Incorrect norm")
|
543 |
+
|
544 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
545 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
546 |
+
|
547 |
+
attn_output = self.attn2(
|
548 |
+
norm_hidden_states,
|
549 |
+
encoder_hidden_states=encoder_hidden_states,
|
550 |
+
attention_mask=encoder_attention_mask,
|
551 |
+
**cross_attention_kwargs,
|
552 |
+
)
|
553 |
+
hidden_states = attn_output + hidden_states
|
554 |
+
|
555 |
+
# 4. Feed-forward
|
556 |
+
# i2vgen doesn't have this norm 🤷♂️
|
557 |
+
if self.norm_type == "ada_norm_continuous":
|
558 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
559 |
+
elif not self.norm_type == "ada_norm_single":
|
560 |
+
norm_hidden_states = self.norm3(hidden_states)
|
561 |
+
|
562 |
+
if self.norm_type == "ada_norm_zero":
|
563 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
564 |
+
|
565 |
+
if self.norm_type == "ada_norm_single":
|
566 |
+
norm_hidden_states = self.norm2(hidden_states)
|
567 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
568 |
+
|
569 |
+
if self._chunk_size is not None:
|
570 |
+
# "feed_forward_chunk_size" can be used to save memory
|
571 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
572 |
+
else:
|
573 |
+
ff_output = self.ff(norm_hidden_states)
|
574 |
+
|
575 |
+
if self.norm_type == "ada_norm_zero":
|
576 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
577 |
+
elif self.norm_type == "ada_norm_single":
|
578 |
+
ff_output = gate_mlp * ff_output
|
579 |
+
|
580 |
+
hidden_states = ff_output + hidden_states
|
581 |
+
if hidden_states.ndim == 4:
|
582 |
+
hidden_states = hidden_states.squeeze(1)
|
583 |
+
|
584 |
+
return hidden_states
|
585 |
+
|
586 |
+
|
587 |
+
class LuminaFeedForward(nn.Module):
|
588 |
+
r"""
|
589 |
+
A feed-forward layer.
|
590 |
+
|
591 |
+
Parameters:
|
592 |
+
hidden_size (`int`):
|
593 |
+
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
|
594 |
+
hidden representations.
|
595 |
+
intermediate_size (`int`): The intermediate dimension of the feedforward layer.
|
596 |
+
multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple
|
597 |
+
of this value.
|
598 |
+
ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden
|
599 |
+
dimension. Defaults to None.
|
600 |
+
"""
|
601 |
+
|
602 |
+
def __init__(
|
603 |
+
self,
|
604 |
+
dim: int,
|
605 |
+
inner_dim: int,
|
606 |
+
multiple_of: Optional[int] = 256,
|
607 |
+
ffn_dim_multiplier: Optional[float] = None,
|
608 |
+
):
|
609 |
+
super().__init__()
|
610 |
+
inner_dim = int(2 * inner_dim / 3)
|
611 |
+
# custom hidden_size factor multiplier
|
612 |
+
if ffn_dim_multiplier is not None:
|
613 |
+
inner_dim = int(ffn_dim_multiplier * inner_dim)
|
614 |
+
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)
|
615 |
+
|
616 |
+
self.linear_1 = nn.Linear(
|
617 |
+
dim,
|
618 |
+
inner_dim,
|
619 |
+
bias=False,
|
620 |
+
)
|
621 |
+
self.linear_2 = nn.Linear(
|
622 |
+
inner_dim,
|
623 |
+
dim,
|
624 |
+
bias=False,
|
625 |
+
)
|
626 |
+
self.linear_3 = nn.Linear(
|
627 |
+
dim,
|
628 |
+
inner_dim,
|
629 |
+
bias=False,
|
630 |
+
)
|
631 |
+
self.silu = FP32SiLU()
|
632 |
+
|
633 |
+
def forward(self, x):
|
634 |
+
return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x))
|
635 |
+
|
636 |
+
|
637 |
+
@maybe_allow_in_graph
|
638 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
639 |
+
r"""
|
640 |
+
A basic Transformer block for video like data.
|
641 |
+
|
642 |
+
Parameters:
|
643 |
+
dim (`int`): The number of channels in the input and output.
|
644 |
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
645 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
646 |
+
attention_head_dim (`int`): The number of channels in each head.
|
647 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
648 |
+
"""
|
649 |
+
|
650 |
+
def __init__(
|
651 |
+
self,
|
652 |
+
dim: int,
|
653 |
+
time_mix_inner_dim: int,
|
654 |
+
num_attention_heads: int,
|
655 |
+
attention_head_dim: int,
|
656 |
+
cross_attention_dim: Optional[int] = None,
|
657 |
+
):
|
658 |
+
super().__init__()
|
659 |
+
self.is_res = dim == time_mix_inner_dim
|
660 |
+
|
661 |
+
self.norm_in = nn.LayerNorm(dim)
|
662 |
+
|
663 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
664 |
+
# 1. Self-Attn
|
665 |
+
self.ff_in = FeedForward(
|
666 |
+
dim,
|
667 |
+
dim_out=time_mix_inner_dim,
|
668 |
+
activation_fn="geglu",
|
669 |
+
)
|
670 |
+
|
671 |
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
672 |
+
self.attn1 = Attention(
|
673 |
+
query_dim=time_mix_inner_dim,
|
674 |
+
heads=num_attention_heads,
|
675 |
+
dim_head=attention_head_dim,
|
676 |
+
cross_attention_dim=None,
|
677 |
+
)
|
678 |
+
|
679 |
+
# 2. Cross-Attn
|
680 |
+
if cross_attention_dim is not None:
|
681 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
682 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
683 |
+
# the second cross attention block.
|
684 |
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
685 |
+
self.attn2 = Attention(
|
686 |
+
query_dim=time_mix_inner_dim,
|
687 |
+
cross_attention_dim=cross_attention_dim,
|
688 |
+
heads=num_attention_heads,
|
689 |
+
dim_head=attention_head_dim,
|
690 |
+
) # is self-attn if encoder_hidden_states is none
|
691 |
+
else:
|
692 |
+
self.norm2 = None
|
693 |
+
self.attn2 = None
|
694 |
+
|
695 |
+
# 3. Feed-forward
|
696 |
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
697 |
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
698 |
+
|
699 |
+
# let chunk size default to None
|
700 |
+
self._chunk_size = None
|
701 |
+
self._chunk_dim = None
|
702 |
+
|
703 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
704 |
+
# Sets chunk feed-forward
|
705 |
+
self._chunk_size = chunk_size
|
706 |
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
707 |
+
self._chunk_dim = 1
|
708 |
+
|
709 |
+
def forward(
|
710 |
+
self,
|
711 |
+
hidden_states: torch.Tensor,
|
712 |
+
num_frames: int,
|
713 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
714 |
+
) -> torch.Tensor:
|
715 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
716 |
+
# 0. Self-Attention
|
717 |
+
batch_size = hidden_states.shape[0]
|
718 |
+
|
719 |
+
batch_frames, seq_length, channels = hidden_states.shape
|
720 |
+
batch_size = batch_frames // num_frames
|
721 |
+
|
722 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
723 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
724 |
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
725 |
+
|
726 |
+
residual = hidden_states
|
727 |
+
hidden_states = self.norm_in(hidden_states)
|
728 |
+
|
729 |
+
if self._chunk_size is not None:
|
730 |
+
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
|
731 |
+
else:
|
732 |
+
hidden_states = self.ff_in(hidden_states)
|
733 |
+
|
734 |
+
if self.is_res:
|
735 |
+
hidden_states = hidden_states + residual
|
736 |
+
|
737 |
+
norm_hidden_states = self.norm1(hidden_states)
|
738 |
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
739 |
+
hidden_states = attn_output + hidden_states
|
740 |
+
|
741 |
+
# 3. Cross-Attention
|
742 |
+
if self.attn2 is not None:
|
743 |
+
norm_hidden_states = self.norm2(hidden_states)
|
744 |
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
745 |
+
hidden_states = attn_output + hidden_states
|
746 |
+
|
747 |
+
# 4. Feed-forward
|
748 |
+
norm_hidden_states = self.norm3(hidden_states)
|
749 |
+
|
750 |
+
if self._chunk_size is not None:
|
751 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
752 |
+
else:
|
753 |
+
ff_output = self.ff(norm_hidden_states)
|
754 |
+
|
755 |
+
if self.is_res:
|
756 |
+
hidden_states = ff_output + hidden_states
|
757 |
+
else:
|
758 |
+
hidden_states = ff_output
|
759 |
+
|
760 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
761 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
762 |
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
763 |
+
|
764 |
+
return hidden_states
|
765 |
+
|
766 |
+
|
767 |
+
class SkipFFTransformerBlock(nn.Module):
|
768 |
+
def __init__(
|
769 |
+
self,
|
770 |
+
dim: int,
|
771 |
+
num_attention_heads: int,
|
772 |
+
attention_head_dim: int,
|
773 |
+
kv_input_dim: int,
|
774 |
+
kv_input_dim_proj_use_bias: bool,
|
775 |
+
dropout=0.0,
|
776 |
+
cross_attention_dim: Optional[int] = None,
|
777 |
+
attention_bias: bool = False,
|
778 |
+
attention_out_bias: bool = True,
|
779 |
+
):
|
780 |
+
super().__init__()
|
781 |
+
if kv_input_dim != dim:
|
782 |
+
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
|
783 |
+
else:
|
784 |
+
self.kv_mapper = None
|
785 |
+
|
786 |
+
self.norm1 = RMSNorm(dim, 1e-06)
|
787 |
+
|
788 |
+
self.attn1 = Attention(
|
789 |
+
query_dim=dim,
|
790 |
+
heads=num_attention_heads,
|
791 |
+
dim_head=attention_head_dim,
|
792 |
+
dropout=dropout,
|
793 |
+
bias=attention_bias,
|
794 |
+
cross_attention_dim=cross_attention_dim,
|
795 |
+
out_bias=attention_out_bias,
|
796 |
+
)
|
797 |
+
|
798 |
+
self.norm2 = RMSNorm(dim, 1e-06)
|
799 |
+
|
800 |
+
self.attn2 = Attention(
|
801 |
+
query_dim=dim,
|
802 |
+
cross_attention_dim=cross_attention_dim,
|
803 |
+
heads=num_attention_heads,
|
804 |
+
dim_head=attention_head_dim,
|
805 |
+
dropout=dropout,
|
806 |
+
bias=attention_bias,
|
807 |
+
out_bias=attention_out_bias,
|
808 |
+
)
|
809 |
+
|
810 |
+
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
|
811 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
812 |
+
|
813 |
+
if self.kv_mapper is not None:
|
814 |
+
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
|
815 |
+
|
816 |
+
norm_hidden_states = self.norm1(hidden_states)
|
817 |
+
|
818 |
+
attn_output = self.attn1(
|
819 |
+
norm_hidden_states,
|
820 |
+
encoder_hidden_states=encoder_hidden_states,
|
821 |
+
**cross_attention_kwargs,
|
822 |
+
)
|
823 |
+
|
824 |
+
hidden_states = attn_output + hidden_states
|
825 |
+
|
826 |
+
norm_hidden_states = self.norm2(hidden_states)
|
827 |
+
|
828 |
+
attn_output = self.attn2(
|
829 |
+
norm_hidden_states,
|
830 |
+
encoder_hidden_states=encoder_hidden_states,
|
831 |
+
**cross_attention_kwargs,
|
832 |
+
)
|
833 |
+
|
834 |
+
hidden_states = attn_output + hidden_states
|
835 |
+
|
836 |
+
return hidden_states
|
837 |
+
|
838 |
+
|
839 |
+
@maybe_allow_in_graph
|
840 |
+
class FreeNoiseTransformerBlock(nn.Module):
|
841 |
+
r"""
|
842 |
+
A FreeNoise Transformer block.
|
843 |
+
|
844 |
+
Parameters:
|
845 |
+
dim (`int`):
|
846 |
+
The number of channels in the input and output.
|
847 |
+
num_attention_heads (`int`):
|
848 |
+
The number of heads to use for multi-head attention.
|
849 |
+
attention_head_dim (`int`):
|
850 |
+
The number of channels in each head.
|
851 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
852 |
+
The dropout probability to use.
|
853 |
+
cross_attention_dim (`int`, *optional*):
|
854 |
+
The size of the encoder_hidden_states vector for cross attention.
|
855 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`):
|
856 |
+
Activation function to be used in feed-forward.
|
857 |
+
num_embeds_ada_norm (`int`, *optional*):
|
858 |
+
The number of diffusion steps used during training. See `Transformer2DModel`.
|
859 |
+
attention_bias (`bool`, defaults to `False`):
|
860 |
+
Configure if the attentions should contain a bias parameter.
|
861 |
+
only_cross_attention (`bool`, defaults to `False`):
|
862 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
863 |
+
double_self_attention (`bool`, defaults to `False`):
|
864 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
865 |
+
upcast_attention (`bool`, defaults to `False`):
|
866 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
867 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
868 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
869 |
+
norm_type (`str`, defaults to `"layer_norm"`):
|
870 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
871 |
+
final_dropout (`bool` defaults to `False`):
|
872 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
873 |
+
attention_type (`str`, defaults to `"default"`):
|
874 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
875 |
+
positional_embeddings (`str`, *optional*):
|
876 |
+
The type of positional embeddings to apply to.
|
877 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
878 |
+
The maximum number of positional embeddings to apply.
|
879 |
+
ff_inner_dim (`int`, *optional*):
|
880 |
+
Hidden dimension of feed-forward MLP.
|
881 |
+
ff_bias (`bool`, defaults to `True`):
|
882 |
+
Whether or not to use bias in feed-forward MLP.
|
883 |
+
attention_out_bias (`bool`, defaults to `True`):
|
884 |
+
Whether or not to use bias in attention output project layer.
|
885 |
+
context_length (`int`, defaults to `16`):
|
886 |
+
The maximum number of frames that the FreeNoise block processes at once.
|
887 |
+
context_stride (`int`, defaults to `4`):
|
888 |
+
The number of frames to be skipped before starting to process a new batch of `context_length` frames.
|
889 |
+
weighting_scheme (`str`, defaults to `"pyramid"`):
|
890 |
+
The weighting scheme to use for weighting averaging of processed latent frames. As described in the
|
891 |
+
Equation 9. of the [FreeNoise](https://arxiv.org/abs/2310.15169) paper, "pyramid" is the default setting
|
892 |
+
used.
|
893 |
+
"""
|
894 |
+
|
895 |
+
def __init__(
|
896 |
+
self,
|
897 |
+
dim: int,
|
898 |
+
num_attention_heads: int,
|
899 |
+
attention_head_dim: int,
|
900 |
+
dropout: float = 0.0,
|
901 |
+
cross_attention_dim: Optional[int] = None,
|
902 |
+
activation_fn: str = "geglu",
|
903 |
+
num_embeds_ada_norm: Optional[int] = None,
|
904 |
+
attention_bias: bool = False,
|
905 |
+
only_cross_attention: bool = False,
|
906 |
+
double_self_attention: bool = False,
|
907 |
+
upcast_attention: bool = False,
|
908 |
+
norm_elementwise_affine: bool = True,
|
909 |
+
norm_type: str = "layer_norm",
|
910 |
+
norm_eps: float = 1e-5,
|
911 |
+
final_dropout: bool = False,
|
912 |
+
positional_embeddings: Optional[str] = None,
|
913 |
+
num_positional_embeddings: Optional[int] = None,
|
914 |
+
ff_inner_dim: Optional[int] = None,
|
915 |
+
ff_bias: bool = True,
|
916 |
+
attention_out_bias: bool = True,
|
917 |
+
context_length: int = 16,
|
918 |
+
context_stride: int = 4,
|
919 |
+
weighting_scheme: str = "pyramid",
|
920 |
+
):
|
921 |
+
super().__init__()
|
922 |
+
self.dim = dim
|
923 |
+
self.num_attention_heads = num_attention_heads
|
924 |
+
self.attention_head_dim = attention_head_dim
|
925 |
+
self.dropout = dropout
|
926 |
+
self.cross_attention_dim = cross_attention_dim
|
927 |
+
self.activation_fn = activation_fn
|
928 |
+
self.attention_bias = attention_bias
|
929 |
+
self.double_self_attention = double_self_attention
|
930 |
+
self.norm_elementwise_affine = norm_elementwise_affine
|
931 |
+
self.positional_embeddings = positional_embeddings
|
932 |
+
self.num_positional_embeddings = num_positional_embeddings
|
933 |
+
self.only_cross_attention = only_cross_attention
|
934 |
+
|
935 |
+
self.set_free_noise_properties(context_length, context_stride, weighting_scheme)
|
936 |
+
|
937 |
+
# We keep these boolean flags for backward-compatibility.
|
938 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
939 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
940 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
941 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
942 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
943 |
+
|
944 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
945 |
+
raise ValueError(
|
946 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
947 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
948 |
+
)
|
949 |
+
|
950 |
+
self.norm_type = norm_type
|
951 |
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
952 |
+
|
953 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
954 |
+
raise ValueError(
|
955 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
956 |
+
)
|
957 |
+
|
958 |
+
if positional_embeddings == "sinusoidal":
|
959 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
960 |
+
else:
|
961 |
+
self.pos_embed = None
|
962 |
+
|
963 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
964 |
+
# 1. Self-Attn
|
965 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
966 |
+
|
967 |
+
self.attn1 = Attention(
|
968 |
+
query_dim=dim,
|
969 |
+
heads=num_attention_heads,
|
970 |
+
dim_head=attention_head_dim,
|
971 |
+
dropout=dropout,
|
972 |
+
bias=attention_bias,
|
973 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
974 |
+
upcast_attention=upcast_attention,
|
975 |
+
out_bias=attention_out_bias,
|
976 |
+
)
|
977 |
+
|
978 |
+
# 2. Cross-Attn
|
979 |
+
if cross_attention_dim is not None or double_self_attention:
|
980 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
981 |
+
|
982 |
+
self.attn2 = Attention(
|
983 |
+
query_dim=dim,
|
984 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
985 |
+
heads=num_attention_heads,
|
986 |
+
dim_head=attention_head_dim,
|
987 |
+
dropout=dropout,
|
988 |
+
bias=attention_bias,
|
989 |
+
upcast_attention=upcast_attention,
|
990 |
+
out_bias=attention_out_bias,
|
991 |
+
) # is self-attn if encoder_hidden_states is none
|
992 |
+
|
993 |
+
# 3. Feed-forward
|
994 |
+
self.ff = FeedForward(
|
995 |
+
dim,
|
996 |
+
dropout=dropout,
|
997 |
+
activation_fn=activation_fn,
|
998 |
+
final_dropout=final_dropout,
|
999 |
+
inner_dim=ff_inner_dim,
|
1000 |
+
bias=ff_bias,
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
1004 |
+
|
1005 |
+
# let chunk size default to None
|
1006 |
+
self._chunk_size = None
|
1007 |
+
self._chunk_dim = 0
|
1008 |
+
|
1009 |
+
def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]:
|
1010 |
+
frame_indices = []
|
1011 |
+
for i in range(0, num_frames - self.context_length + 1, self.context_stride):
|
1012 |
+
window_start = i
|
1013 |
+
window_end = min(num_frames, i + self.context_length)
|
1014 |
+
frame_indices.append((window_start, window_end))
|
1015 |
+
return frame_indices
|
1016 |
+
|
1017 |
+
def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]:
|
1018 |
+
if weighting_scheme == "flat":
|
1019 |
+
weights = [1.0] * num_frames
|
1020 |
+
|
1021 |
+
elif weighting_scheme == "pyramid":
|
1022 |
+
if num_frames % 2 == 0:
|
1023 |
+
# num_frames = 4 => [1, 2, 2, 1]
|
1024 |
+
mid = num_frames // 2
|
1025 |
+
weights = list(range(1, mid + 1))
|
1026 |
+
weights = weights + weights[::-1]
|
1027 |
+
else:
|
1028 |
+
# num_frames = 5 => [1, 2, 3, 2, 1]
|
1029 |
+
mid = (num_frames + 1) // 2
|
1030 |
+
weights = list(range(1, mid))
|
1031 |
+
weights = weights + [mid] + weights[::-1]
|
1032 |
+
|
1033 |
+
elif weighting_scheme == "delayed_reverse_sawtooth":
|
1034 |
+
if num_frames % 2 == 0:
|
1035 |
+
# num_frames = 4 => [0.01, 2, 2, 1]
|
1036 |
+
mid = num_frames // 2
|
1037 |
+
weights = [0.01] * (mid - 1) + [mid]
|
1038 |
+
weights = weights + list(range(mid, 0, -1))
|
1039 |
+
else:
|
1040 |
+
# num_frames = 5 => [0.01, 0.01, 3, 2, 1]
|
1041 |
+
mid = (num_frames + 1) // 2
|
1042 |
+
weights = [0.01] * mid
|
1043 |
+
weights = weights + list(range(mid, 0, -1))
|
1044 |
+
else:
|
1045 |
+
raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}")
|
1046 |
+
|
1047 |
+
return weights
|
1048 |
+
|
1049 |
+
def set_free_noise_properties(
|
1050 |
+
self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid"
|
1051 |
+
) -> None:
|
1052 |
+
self.context_length = context_length
|
1053 |
+
self.context_stride = context_stride
|
1054 |
+
self.weighting_scheme = weighting_scheme
|
1055 |
+
|
1056 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None:
|
1057 |
+
# Sets chunk feed-forward
|
1058 |
+
self._chunk_size = chunk_size
|
1059 |
+
self._chunk_dim = dim
|
1060 |
+
|
1061 |
+
def forward(
|
1062 |
+
self,
|
1063 |
+
hidden_states: torch.Tensor,
|
1064 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1065 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1066 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1067 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
1068 |
+
*args,
|
1069 |
+
**kwargs,
|
1070 |
+
) -> torch.Tensor:
|
1071 |
+
if cross_attention_kwargs is not None:
|
1072 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
1073 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
1074 |
+
|
1075 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
1076 |
+
|
1077 |
+
# hidden_states: [B x H x W, F, C]
|
1078 |
+
device = hidden_states.device
|
1079 |
+
dtype = hidden_states.dtype
|
1080 |
+
|
1081 |
+
num_frames = hidden_states.size(1)
|
1082 |
+
frame_indices = self._get_frame_indices(num_frames)
|
1083 |
+
frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme)
|
1084 |
+
frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1)
|
1085 |
+
is_last_frame_batch_complete = frame_indices[-1][1] == num_frames
|
1086 |
+
|
1087 |
+
# Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length
|
1088 |
+
# For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges:
|
1089 |
+
# [(0, 16), (4, 20), (8, 24), (10, 26)]
|
1090 |
+
if not is_last_frame_batch_complete:
|
1091 |
+
if num_frames < self.context_length:
|
1092 |
+
raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}")
|
1093 |
+
last_frame_batch_length = num_frames - frame_indices[-1][1]
|
1094 |
+
frame_indices.append((num_frames - self.context_length, num_frames))
|
1095 |
+
|
1096 |
+
num_times_accumulated = torch.zeros((1, num_frames, 1), device=device)
|
1097 |
+
accumulated_values = torch.zeros_like(hidden_states)
|
1098 |
+
|
1099 |
+
for i, (frame_start, frame_end) in enumerate(frame_indices):
|
1100 |
+
# The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle
|
1101 |
+
# cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or
|
1102 |
+
# essentially a non-multiple of `context_length`.
|
1103 |
+
weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end])
|
1104 |
+
weights *= frame_weights
|
1105 |
+
|
1106 |
+
hidden_states_chunk = hidden_states[:, frame_start:frame_end]
|
1107 |
+
|
1108 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
1109 |
+
# 1. Self-Attention
|
1110 |
+
norm_hidden_states = self.norm1(hidden_states_chunk)
|
1111 |
+
|
1112 |
+
if self.pos_embed is not None:
|
1113 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1114 |
+
|
1115 |
+
attn_output = self.attn1(
|
1116 |
+
norm_hidden_states,
|
1117 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
1118 |
+
attention_mask=attention_mask,
|
1119 |
+
**cross_attention_kwargs,
|
1120 |
+
)
|
1121 |
+
|
1122 |
+
hidden_states_chunk = attn_output + hidden_states_chunk
|
1123 |
+
if hidden_states_chunk.ndim == 4:
|
1124 |
+
hidden_states_chunk = hidden_states_chunk.squeeze(1)
|
1125 |
+
|
1126 |
+
# 2. Cross-Attention
|
1127 |
+
if self.attn2 is not None:
|
1128 |
+
norm_hidden_states = self.norm2(hidden_states_chunk)
|
1129 |
+
|
1130 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
1131 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1132 |
+
|
1133 |
+
attn_output = self.attn2(
|
1134 |
+
norm_hidden_states,
|
1135 |
+
encoder_hidden_states=encoder_hidden_states,
|
1136 |
+
attention_mask=encoder_attention_mask,
|
1137 |
+
**cross_attention_kwargs,
|
1138 |
+
)
|
1139 |
+
hidden_states_chunk = attn_output + hidden_states_chunk
|
1140 |
+
|
1141 |
+
if i == len(frame_indices) - 1 and not is_last_frame_batch_complete:
|
1142 |
+
accumulated_values[:, -last_frame_batch_length:] += (
|
1143 |
+
hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:]
|
1144 |
+
)
|
1145 |
+
num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length]
|
1146 |
+
else:
|
1147 |
+
accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights
|
1148 |
+
num_times_accumulated[:, frame_start:frame_end] += weights
|
1149 |
+
|
1150 |
+
# TODO(aryan): Maybe this could be done in a better way.
|
1151 |
+
#
|
1152 |
+
# Previously, this was:
|
1153 |
+
# hidden_states = torch.where(
|
1154 |
+
# num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values
|
1155 |
+
# )
|
1156 |
+
#
|
1157 |
+
# The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory
|
1158 |
+
# spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes
|
1159 |
+
# from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly
|
1160 |
+
# looked into this deeply because other memory optimizations led to more pronounced reductions.
|
1161 |
+
hidden_states = torch.cat(
|
1162 |
+
[
|
1163 |
+
torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split)
|
1164 |
+
for accumulated_split, num_times_split in zip(
|
1165 |
+
accumulated_values.split(self.context_length, dim=1),
|
1166 |
+
num_times_accumulated.split(self.context_length, dim=1),
|
1167 |
+
)
|
1168 |
+
],
|
1169 |
+
dim=1,
|
1170 |
+
).to(dtype)
|
1171 |
+
|
1172 |
+
# 3. Feed-forward
|
1173 |
+
norm_hidden_states = self.norm3(hidden_states)
|
1174 |
+
|
1175 |
+
if self._chunk_size is not None:
|
1176 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
1177 |
+
else:
|
1178 |
+
ff_output = self.ff(norm_hidden_states)
|
1179 |
+
|
1180 |
+
hidden_states = ff_output + hidden_states
|
1181 |
+
if hidden_states.ndim == 4:
|
1182 |
+
hidden_states = hidden_states.squeeze(1)
|
1183 |
+
|
1184 |
+
return hidden_states
|
1185 |
+
|
1186 |
+
|
1187 |
+
class FeedForward(nn.Module):
|
1188 |
+
r"""
|
1189 |
+
A feed-forward layer.
|
1190 |
+
|
1191 |
+
Parameters:
|
1192 |
+
dim (`int`): The number of channels in the input.
|
1193 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
1194 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
1195 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
1196 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
1197 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
1198 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
1199 |
+
"""
|
1200 |
+
|
1201 |
+
def __init__(
|
1202 |
+
self,
|
1203 |
+
dim: int,
|
1204 |
+
dim_out: Optional[int] = None,
|
1205 |
+
mult: int = 4,
|
1206 |
+
dropout: float = 0.0,
|
1207 |
+
activation_fn: str = "geglu",
|
1208 |
+
final_dropout: bool = False,
|
1209 |
+
inner_dim=None,
|
1210 |
+
bias: bool = True,
|
1211 |
+
):
|
1212 |
+
super().__init__()
|
1213 |
+
if inner_dim is None:
|
1214 |
+
inner_dim = int(dim * mult)
|
1215 |
+
dim_out = dim_out if dim_out is not None else dim
|
1216 |
+
|
1217 |
+
if activation_fn == "gelu":
|
1218 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
1219 |
+
if activation_fn == "gelu-approximate":
|
1220 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
1221 |
+
elif activation_fn == "geglu":
|
1222 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
1223 |
+
elif activation_fn == "geglu-approximate":
|
1224 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
1225 |
+
elif activation_fn == "swiglu":
|
1226 |
+
act_fn = SwiGLU(dim, inner_dim, bias=bias)
|
1227 |
+
|
1228 |
+
self.net = nn.ModuleList([])
|
1229 |
+
# project in
|
1230 |
+
self.net.append(act_fn)
|
1231 |
+
# project dropout
|
1232 |
+
self.net.append(nn.Dropout(dropout))
|
1233 |
+
# project out
|
1234 |
+
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
|
1235 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
1236 |
+
if final_dropout:
|
1237 |
+
self.net.append(nn.Dropout(dropout))
|
1238 |
+
|
1239 |
+
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
1240 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
1241 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
1242 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
1243 |
+
for module in self.net:
|
1244 |
+
hidden_states = module(hidden_states)
|
1245 |
+
return hidden_states
|
models/resampler.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from diffusers.models.embeddings import Timesteps, TimestepEmbedding
|
8 |
+
|
9 |
+
def get_timestep_embedding(
|
10 |
+
timesteps: torch.Tensor,
|
11 |
+
embedding_dim: int,
|
12 |
+
flip_sin_to_cos: bool = False,
|
13 |
+
downscale_freq_shift: float = 1,
|
14 |
+
scale: float = 1,
|
15 |
+
max_period: int = 10000,
|
16 |
+
):
|
17 |
+
"""
|
18 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
19 |
+
|
20 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
21 |
+
These may be fractional.
|
22 |
+
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
|
23 |
+
embeddings. :return: an [N x dim] Tensor of positional embeddings.
|
24 |
+
"""
|
25 |
+
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
26 |
+
|
27 |
+
half_dim = embedding_dim // 2
|
28 |
+
exponent = -math.log(max_period) * torch.arange(
|
29 |
+
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
|
30 |
+
)
|
31 |
+
exponent = exponent / (half_dim - downscale_freq_shift)
|
32 |
+
|
33 |
+
emb = torch.exp(exponent)
|
34 |
+
emb = timesteps[:, None].float() * emb[None, :]
|
35 |
+
|
36 |
+
# scale embeddings
|
37 |
+
emb = scale * emb
|
38 |
+
|
39 |
+
# concat sine and cosine embeddings
|
40 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
41 |
+
|
42 |
+
# flip sine and cosine embeddings
|
43 |
+
if flip_sin_to_cos:
|
44 |
+
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
45 |
+
|
46 |
+
# zero pad
|
47 |
+
if embedding_dim % 2 == 1:
|
48 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
49 |
+
return emb
|
50 |
+
|
51 |
+
|
52 |
+
# FFN
|
53 |
+
def FeedForward(dim, mult=4):
|
54 |
+
inner_dim = int(dim * mult)
|
55 |
+
return nn.Sequential(
|
56 |
+
nn.LayerNorm(dim),
|
57 |
+
nn.Linear(dim, inner_dim, bias=False),
|
58 |
+
nn.GELU(),
|
59 |
+
nn.Linear(inner_dim, dim, bias=False),
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
def reshape_tensor(x, heads):
|
64 |
+
bs, length, width = x.shape
|
65 |
+
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
66 |
+
x = x.view(bs, length, heads, -1)
|
67 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
68 |
+
x = x.transpose(1, 2)
|
69 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
70 |
+
x = x.reshape(bs, heads, length, -1)
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
class PerceiverAttention(nn.Module):
|
75 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
76 |
+
super().__init__()
|
77 |
+
self.scale = dim_head**-0.5
|
78 |
+
self.dim_head = dim_head
|
79 |
+
self.heads = heads
|
80 |
+
inner_dim = dim_head * heads
|
81 |
+
|
82 |
+
self.norm1 = nn.LayerNorm(dim)
|
83 |
+
self.norm2 = nn.LayerNorm(dim)
|
84 |
+
|
85 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
86 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
87 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
88 |
+
|
89 |
+
|
90 |
+
def forward(self, x, latents, shift=None, scale=None):
|
91 |
+
"""
|
92 |
+
Args:
|
93 |
+
x (torch.Tensor): image features
|
94 |
+
shape (b, n1, D)
|
95 |
+
latent (torch.Tensor): latent features
|
96 |
+
shape (b, n2, D)
|
97 |
+
"""
|
98 |
+
x = self.norm1(x)
|
99 |
+
latents = self.norm2(latents)
|
100 |
+
|
101 |
+
if shift is not None and scale is not None:
|
102 |
+
latents = latents * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
103 |
+
|
104 |
+
b, l, _ = latents.shape
|
105 |
+
|
106 |
+
q = self.to_q(latents)
|
107 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
108 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
109 |
+
|
110 |
+
q = reshape_tensor(q, self.heads)
|
111 |
+
k = reshape_tensor(k, self.heads)
|
112 |
+
v = reshape_tensor(v, self.heads)
|
113 |
+
|
114 |
+
# attention
|
115 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
116 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
117 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
118 |
+
out = weight @ v
|
119 |
+
|
120 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
121 |
+
|
122 |
+
return self.to_out(out)
|
123 |
+
|
124 |
+
|
125 |
+
class Resampler(nn.Module):
|
126 |
+
def __init__(
|
127 |
+
self,
|
128 |
+
dim=1024,
|
129 |
+
depth=8,
|
130 |
+
dim_head=64,
|
131 |
+
heads=16,
|
132 |
+
num_queries=8,
|
133 |
+
embedding_dim=768,
|
134 |
+
output_dim=1024,
|
135 |
+
ff_mult=4,
|
136 |
+
*args,
|
137 |
+
**kwargs,
|
138 |
+
):
|
139 |
+
super().__init__()
|
140 |
+
|
141 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
142 |
+
|
143 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
144 |
+
|
145 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
146 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
147 |
+
|
148 |
+
self.layers = nn.ModuleList([])
|
149 |
+
for _ in range(depth):
|
150 |
+
self.layers.append(
|
151 |
+
nn.ModuleList(
|
152 |
+
[
|
153 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
154 |
+
FeedForward(dim=dim, mult=ff_mult),
|
155 |
+
]
|
156 |
+
)
|
157 |
+
)
|
158 |
+
|
159 |
+
def forward(self, x):
|
160 |
+
|
161 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
162 |
+
|
163 |
+
x = self.proj_in(x)
|
164 |
+
|
165 |
+
for attn, ff in self.layers:
|
166 |
+
latents = attn(x, latents) + latents
|
167 |
+
latents = ff(latents) + latents
|
168 |
+
|
169 |
+
latents = self.proj_out(latents)
|
170 |
+
return self.norm_out(latents)
|
171 |
+
|
172 |
+
|
173 |
+
class TimeResampler(nn.Module):
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
dim=1024,
|
177 |
+
depth=8,
|
178 |
+
dim_head=64,
|
179 |
+
heads=16,
|
180 |
+
num_queries=8,
|
181 |
+
embedding_dim=768,
|
182 |
+
output_dim=1024,
|
183 |
+
ff_mult=4,
|
184 |
+
timestep_in_dim=320,
|
185 |
+
timestep_flip_sin_to_cos=True,
|
186 |
+
timestep_freq_shift=0,
|
187 |
+
):
|
188 |
+
super().__init__()
|
189 |
+
|
190 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
191 |
+
|
192 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
193 |
+
|
194 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
195 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
196 |
+
|
197 |
+
self.layers = nn.ModuleList([])
|
198 |
+
for _ in range(depth):
|
199 |
+
self.layers.append(
|
200 |
+
nn.ModuleList(
|
201 |
+
[
|
202 |
+
# msa
|
203 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
204 |
+
# ff
|
205 |
+
FeedForward(dim=dim, mult=ff_mult),
|
206 |
+
# adaLN
|
207 |
+
nn.Sequential(nn.SiLU(), nn.Linear(dim, 4 * dim, bias=True))
|
208 |
+
]
|
209 |
+
)
|
210 |
+
)
|
211 |
+
|
212 |
+
# time
|
213 |
+
self.time_proj = Timesteps(timestep_in_dim, timestep_flip_sin_to_cos, timestep_freq_shift)
|
214 |
+
self.time_embedding = TimestepEmbedding(timestep_in_dim, dim, act_fn="silu")
|
215 |
+
|
216 |
+
# adaLN
|
217 |
+
# self.adaLN_modulation = nn.Sequential(
|
218 |
+
# nn.SiLU(),
|
219 |
+
# nn.Linear(timestep_out_dim, 6 * timestep_out_dim, bias=True)
|
220 |
+
# )
|
221 |
+
|
222 |
+
|
223 |
+
def forward(self, x, timestep, need_temb=False):
|
224 |
+
timestep_emb = self.embedding_time(x, timestep) # bs, dim
|
225 |
+
|
226 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
227 |
+
|
228 |
+
x = self.proj_in(x)
|
229 |
+
x = x + timestep_emb[:, None]
|
230 |
+
|
231 |
+
for attn, ff, adaLN_modulation in self.layers:
|
232 |
+
shift_msa, scale_msa, shift_mlp, scale_mlp = adaLN_modulation(timestep_emb).chunk(4, dim=1)
|
233 |
+
latents = attn(x, latents, shift_msa, scale_msa) + latents
|
234 |
+
|
235 |
+
res = latents
|
236 |
+
for idx_ff in range(len(ff)):
|
237 |
+
layer_ff = ff[idx_ff]
|
238 |
+
latents = layer_ff(latents)
|
239 |
+
if idx_ff == 0 and isinstance(layer_ff, nn.LayerNorm): # adaLN
|
240 |
+
latents = latents * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
|
241 |
+
latents = latents + res
|
242 |
+
|
243 |
+
# latents = ff(latents) + latents
|
244 |
+
|
245 |
+
latents = self.proj_out(latents)
|
246 |
+
latents = self.norm_out(latents)
|
247 |
+
|
248 |
+
if need_temb:
|
249 |
+
return latents, timestep_emb
|
250 |
+
else:
|
251 |
+
return latents
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
def embedding_time(self, sample, timestep):
|
256 |
+
|
257 |
+
# 1. time
|
258 |
+
timesteps = timestep
|
259 |
+
if not torch.is_tensor(timesteps):
|
260 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
261 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
262 |
+
is_mps = sample.device.type == "mps"
|
263 |
+
if isinstance(timestep, float):
|
264 |
+
dtype = torch.float32 if is_mps else torch.float64
|
265 |
+
else:
|
266 |
+
dtype = torch.int32 if is_mps else torch.int64
|
267 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
268 |
+
elif len(timesteps.shape) == 0:
|
269 |
+
timesteps = timesteps[None].to(sample.device)
|
270 |
+
|
271 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
272 |
+
timesteps = timesteps.expand(sample.shape[0])
|
273 |
+
|
274 |
+
t_emb = self.time_proj(timesteps)
|
275 |
+
|
276 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
277 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
278 |
+
# there might be better ways to encapsulate this.
|
279 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
280 |
+
|
281 |
+
emb = self.time_embedding(t_emb, None)
|
282 |
+
return emb
|
283 |
+
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
if __name__ == '__main__':
|
289 |
+
model = TimeResampler(
|
290 |
+
dim=1280,
|
291 |
+
depth=4,
|
292 |
+
dim_head=64,
|
293 |
+
heads=20,
|
294 |
+
num_queries=16,
|
295 |
+
embedding_dim=512,
|
296 |
+
output_dim=2048,
|
297 |
+
ff_mult=4,
|
298 |
+
timestep_in_dim=320,
|
299 |
+
timestep_flip_sin_to_cos=True,
|
300 |
+
timestep_freq_shift=0,
|
301 |
+
in_channel_extra_emb=2048,
|
302 |
+
)
|
303 |
+
|
304 |
+
|
models/transformer_sd3.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
23 |
+
from .attention import JointTransformerBlock
|
24 |
+
from diffusers.models.attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0
|
25 |
+
from diffusers.models.modeling_utils import ModelMixin
|
26 |
+
from diffusers.models.normalization import AdaLayerNormContinuous
|
27 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
28 |
+
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
29 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33 |
+
|
34 |
+
|
35 |
+
class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
36 |
+
"""
|
37 |
+
The Transformer model introduced in Stable Diffusion 3.
|
38 |
+
|
39 |
+
Reference: https://arxiv.org/abs/2403.03206
|
40 |
+
|
41 |
+
Parameters:
|
42 |
+
sample_size (`int`): The width of the latent images. This is fixed during training since
|
43 |
+
it is used to learn a number of position embeddings.
|
44 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
45 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
46 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use.
|
47 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
49 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
50 |
+
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
|
51 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
52 |
+
out_channels (`int`, defaults to 16): Number of output channels.
|
53 |
+
|
54 |
+
"""
|
55 |
+
|
56 |
+
_supports_gradient_checkpointing = True
|
57 |
+
|
58 |
+
@register_to_config
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
sample_size: int = 128,
|
62 |
+
patch_size: int = 2,
|
63 |
+
in_channels: int = 16,
|
64 |
+
num_layers: int = 18,
|
65 |
+
attention_head_dim: int = 64,
|
66 |
+
num_attention_heads: int = 18,
|
67 |
+
joint_attention_dim: int = 4096,
|
68 |
+
caption_projection_dim: int = 1152,
|
69 |
+
pooled_projection_dim: int = 2048,
|
70 |
+
out_channels: int = 16,
|
71 |
+
pos_embed_max_size: int = 96,
|
72 |
+
dual_attention_layers: Tuple[
|
73 |
+
int, ...
|
74 |
+
] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
|
75 |
+
qk_norm: Optional[str] = None,
|
76 |
+
):
|
77 |
+
super().__init__()
|
78 |
+
default_out_channels = in_channels
|
79 |
+
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
80 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
81 |
+
|
82 |
+
self.pos_embed = PatchEmbed(
|
83 |
+
height=self.config.sample_size,
|
84 |
+
width=self.config.sample_size,
|
85 |
+
patch_size=self.config.patch_size,
|
86 |
+
in_channels=self.config.in_channels,
|
87 |
+
embed_dim=self.inner_dim,
|
88 |
+
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
|
89 |
+
)
|
90 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
91 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
92 |
+
)
|
93 |
+
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
|
94 |
+
|
95 |
+
# `attention_head_dim` is doubled to account for the mixing.
|
96 |
+
# It needs to crafted when we get the actual checkpoints.
|
97 |
+
self.transformer_blocks = nn.ModuleList(
|
98 |
+
[
|
99 |
+
JointTransformerBlock(
|
100 |
+
dim=self.inner_dim,
|
101 |
+
num_attention_heads=self.config.num_attention_heads,
|
102 |
+
attention_head_dim=self.config.attention_head_dim,
|
103 |
+
context_pre_only=i == num_layers - 1,
|
104 |
+
qk_norm=qk_norm,
|
105 |
+
use_dual_attention=True if i in dual_attention_layers else False,
|
106 |
+
)
|
107 |
+
for i in range(self.config.num_layers)
|
108 |
+
]
|
109 |
+
)
|
110 |
+
|
111 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
112 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
113 |
+
|
114 |
+
self.gradient_checkpointing = False
|
115 |
+
|
116 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
117 |
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
118 |
+
"""
|
119 |
+
Sets the attention processor to use [feed forward
|
120 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
121 |
+
|
122 |
+
Parameters:
|
123 |
+
chunk_size (`int`, *optional*):
|
124 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
125 |
+
over each tensor of dim=`dim`.
|
126 |
+
dim (`int`, *optional*, defaults to `0`):
|
127 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
128 |
+
or dim=1 (sequence length).
|
129 |
+
"""
|
130 |
+
if dim not in [0, 1]:
|
131 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
132 |
+
|
133 |
+
# By default chunk size is 1
|
134 |
+
chunk_size = chunk_size or 1
|
135 |
+
|
136 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
137 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
138 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
139 |
+
|
140 |
+
for child in module.children():
|
141 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
142 |
+
|
143 |
+
for module in self.children():
|
144 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
145 |
+
|
146 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
|
147 |
+
def disable_forward_chunking(self):
|
148 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
149 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
150 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
151 |
+
|
152 |
+
for child in module.children():
|
153 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
154 |
+
|
155 |
+
for module in self.children():
|
156 |
+
fn_recursive_feed_forward(module, None, 0)
|
157 |
+
|
158 |
+
@property
|
159 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
160 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
161 |
+
r"""
|
162 |
+
Returns:
|
163 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
164 |
+
indexed by its weight name.
|
165 |
+
"""
|
166 |
+
# set recursively
|
167 |
+
processors = {}
|
168 |
+
|
169 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
170 |
+
if hasattr(module, "get_processor"):
|
171 |
+
processors[f"{name}.processor"] = module.get_processor()
|
172 |
+
|
173 |
+
for sub_name, child in module.named_children():
|
174 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
175 |
+
|
176 |
+
return processors
|
177 |
+
|
178 |
+
for name, module in self.named_children():
|
179 |
+
fn_recursive_add_processors(name, module, processors)
|
180 |
+
|
181 |
+
return processors
|
182 |
+
|
183 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
184 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
185 |
+
r"""
|
186 |
+
Sets the attention processor to use to compute attention.
|
187 |
+
|
188 |
+
Parameters:
|
189 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
190 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
191 |
+
for **all** `Attention` layers.
|
192 |
+
|
193 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
194 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
195 |
+
|
196 |
+
"""
|
197 |
+
count = len(self.attn_processors.keys())
|
198 |
+
|
199 |
+
if isinstance(processor, dict) and len(processor) != count:
|
200 |
+
raise ValueError(
|
201 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
202 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
203 |
+
)
|
204 |
+
|
205 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
206 |
+
if hasattr(module, "set_processor"):
|
207 |
+
if not isinstance(processor, dict):
|
208 |
+
module.set_processor(processor)
|
209 |
+
else:
|
210 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
211 |
+
|
212 |
+
for sub_name, child in module.named_children():
|
213 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
214 |
+
|
215 |
+
for name, module in self.named_children():
|
216 |
+
fn_recursive_attn_processor(name, module, processor)
|
217 |
+
|
218 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0
|
219 |
+
def fuse_qkv_projections(self):
|
220 |
+
"""
|
221 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
222 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
223 |
+
|
224 |
+
<Tip warning={true}>
|
225 |
+
|
226 |
+
This API is 🧪 experimental.
|
227 |
+
|
228 |
+
</Tip>
|
229 |
+
"""
|
230 |
+
self.original_attn_processors = None
|
231 |
+
|
232 |
+
for _, attn_processor in self.attn_processors.items():
|
233 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
234 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
235 |
+
|
236 |
+
self.original_attn_processors = self.attn_processors
|
237 |
+
|
238 |
+
for module in self.modules():
|
239 |
+
if isinstance(module, Attention):
|
240 |
+
module.fuse_projections(fuse=True)
|
241 |
+
|
242 |
+
self.set_attn_processor(FusedJointAttnProcessor2_0())
|
243 |
+
|
244 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
245 |
+
def unfuse_qkv_projections(self):
|
246 |
+
"""Disables the fused QKV projection if enabled.
|
247 |
+
|
248 |
+
<Tip warning={true}>
|
249 |
+
|
250 |
+
This API is 🧪 experimental.
|
251 |
+
|
252 |
+
</Tip>
|
253 |
+
|
254 |
+
"""
|
255 |
+
if self.original_attn_processors is not None:
|
256 |
+
self.set_attn_processor(self.original_attn_processors)
|
257 |
+
|
258 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
259 |
+
if hasattr(module, "gradient_checkpointing"):
|
260 |
+
module.gradient_checkpointing = value
|
261 |
+
|
262 |
+
def forward(
|
263 |
+
self,
|
264 |
+
hidden_states: torch.FloatTensor,
|
265 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
266 |
+
pooled_projections: torch.FloatTensor = None,
|
267 |
+
timestep: torch.LongTensor = None,
|
268 |
+
block_controlnet_hidden_states: List = None,
|
269 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
270 |
+
return_dict: bool = True,
|
271 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
272 |
+
"""
|
273 |
+
The [`SD3Transformer2DModel`] forward method.
|
274 |
+
|
275 |
+
Args:
|
276 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
277 |
+
Input `hidden_states`.
|
278 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
279 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
280 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
281 |
+
from the embeddings of input conditions.
|
282 |
+
timestep ( `torch.LongTensor`):
|
283 |
+
Used to indicate denoising step.
|
284 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
285 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
286 |
+
joint_attention_kwargs (`dict`, *optional*):
|
287 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
288 |
+
`self.processor` in
|
289 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
290 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
291 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
292 |
+
tuple.
|
293 |
+
|
294 |
+
Returns:
|
295 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
296 |
+
`tuple` where the first element is the sample tensor.
|
297 |
+
"""
|
298 |
+
if joint_attention_kwargs is not None:
|
299 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
300 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
301 |
+
else:
|
302 |
+
lora_scale = 1.0
|
303 |
+
|
304 |
+
if USE_PEFT_BACKEND:
|
305 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
306 |
+
scale_lora_layers(self, lora_scale)
|
307 |
+
else:
|
308 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
309 |
+
logger.warning(
|
310 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
311 |
+
)
|
312 |
+
|
313 |
+
height, width = hidden_states.shape[-2:]
|
314 |
+
|
315 |
+
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
316 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
317 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
318 |
+
|
319 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
320 |
+
if self.training and self.gradient_checkpointing:
|
321 |
+
|
322 |
+
def create_custom_forward(module, return_dict=None):
|
323 |
+
def custom_forward(*inputs):
|
324 |
+
if return_dict is not None:
|
325 |
+
return module(*inputs, return_dict=return_dict)
|
326 |
+
else:
|
327 |
+
return module(*inputs)
|
328 |
+
|
329 |
+
return custom_forward
|
330 |
+
|
331 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
332 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
333 |
+
create_custom_forward(block),
|
334 |
+
hidden_states,
|
335 |
+
encoder_hidden_states,
|
336 |
+
temb,
|
337 |
+
joint_attention_kwargs,
|
338 |
+
**ckpt_kwargs,
|
339 |
+
)
|
340 |
+
|
341 |
+
else:
|
342 |
+
encoder_hidden_states, hidden_states = block(
|
343 |
+
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb,
|
344 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
345 |
+
)
|
346 |
+
|
347 |
+
# controlnet residual
|
348 |
+
if block_controlnet_hidden_states is not None and block.context_pre_only is False:
|
349 |
+
interval_control = len(self.transformer_blocks) // len(block_controlnet_hidden_states)
|
350 |
+
hidden_states = hidden_states + block_controlnet_hidden_states[index_block // interval_control]
|
351 |
+
|
352 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
353 |
+
hidden_states = self.proj_out(hidden_states)
|
354 |
+
|
355 |
+
# unpatchify
|
356 |
+
patch_size = self.config.patch_size
|
357 |
+
height = height // patch_size
|
358 |
+
width = width // patch_size
|
359 |
+
|
360 |
+
hidden_states = hidden_states.reshape(
|
361 |
+
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
362 |
+
)
|
363 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
364 |
+
output = hidden_states.reshape(
|
365 |
+
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
366 |
+
)
|
367 |
+
|
368 |
+
if USE_PEFT_BACKEND:
|
369 |
+
# remove `lora_scale` from each PEFT layer
|
370 |
+
unscale_lora_layers(self, lora_scale)
|
371 |
+
|
372 |
+
if not return_dict:
|
373 |
+
return (output,)
|
374 |
+
|
375 |
+
return Transformer2DModelOutput(sample=output)
|