Mistral-Large-2 / app.py
Nymbo's picture
Update app.py
6791a71 verified
raw
history blame
1.67 kB
import gradio as gr
from openai import OpenAI
import os
TOKEN = os.getenv("HF_TOKEN")
client = OpenAI(
base_url="/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fv1%2F%26quot%3B%3C%2Fspan%3E%2C%3C!-- HTML_TAG_END -->
api_key=TOKEN,
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat.completions.create(
model="mistralai/Mistral-Large-Instruct-2407",
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
messages=messages,
):
token = message.choices[0].delta.content
response += token
yield response
theme="Nymbo/Alyx_Theme"
chatbot = gr.Chatbot(height=600)
demo = gr.ChatInterface(
respond,
theme=theme,
fill_height=True,
chatbot=chatbot,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()