File size: 1,545 Bytes
0df6dbb
79cb6aa
0df6dbb
79cb6aa
0df6dbb
79cb6aa
 
0aee4ec
79cb6aa
0df6dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79cb6aa
 
 
0df6dbb
 
 
 
9a41865
0df6dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
from openai import OpenAI

TOKEN = os.getenv("HF_TOKEN")

client = OpenAI(
    base_url="/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fv1%2F%26quot%3B%3C%2Fspan%3E%2C
    api_key=TOKEN,
)

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""
    
    for message in  client.chat.completions.create(
        model="meta-llama/Meta-Llama-3.1-405B-Instruct-FP8",
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        messages=messages,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()