File size: 2,884 Bytes
9551276
3be135a
5e72808
 
 
ec21d4f
2bcefc7
ec21d4f
2bcefc7
ec21d4f
14f07e7
ec21d4f
 
 
 
 
14f07e7
2bcefc7
3be135a
14f07e7
 
 
5e72808
3be135a
 
 
5e72808
2bcefc7
110c323
 
 
 
bb25d5e
5e72808
 
 
 
 
 
e42b84a
5d31a12
 
 
5e72808
110c323
ec21d4f
 
c5df1c5
 
ec21d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110c323
5e72808
110c323
ec21d4f
 
 
 
 
 
 
 
 
110c323
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import random
import gradio as gr
from groq import Groq

# Initialize the Groq client with your API key
client = Groq(
    api_key=os.environ.get("Groq_Api_Key")
)

def create_history_messages(history):
    # Interleave user and assistant messages in the order they occurred
    history_messages = []
    for user_msg, assistant_msg in history:
        history_messages.append({"role": "user", "content": user_msg})
        history_messages.append({"role": "assistant", "content": assistant_msg})
    return history_messages

def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed):
    messages = create_history_messages(history)
    messages.append({"role": "user", "content": prompt})
    print(messages)

    if seed == 0:
        seed = random.randint(1, 100000)
    
    stream = client.chat.completions.create(
        messages=messages,
        model=model,
        temperature=temperature,
        max_tokens=max_tokens,
        top_p=top_p,
        seed=seed,
        stop=None,
        stream=True,
    )

    response = ""
    for chunk in stream:
        delta_content = chunk.choices[0].delta.content
        if delta_content is not None:
            response += delta_content
            yield response

additional_inputs = [
    gr.Dropdown(
        choices=[
            "llama-3.2-3b-preview",
            "llama-3.2-1b-preview",
            "llama-3.1-70b-versatile",
            "llama-3.1-8b-instant",
            "llama3-70b-8192",
            "llama3-8b-8192",
            "mixtral-8x7b-32768",
            "gemma2-9b-it",
            "gemma-7b-it"
        ],
        value="llama-3.1-70b-versatile",
        label="Model"
    ),
    gr.Slider(
        minimum=0.0, maximum=1.0, step=0.01, value=0.5,
        label="Temperature",
        info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."
    ),
    gr.Slider(
        minimum=1, maximum=131000, step=1, value=8100,
        label="Max Tokens",
        info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b, 132k for llama 3.1."
    ),
    gr.Slider(
        minimum=0.0, maximum=1.0, step=0.01, value=0.5,
        label="Top P",
        info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."
    ),
    gr.Number(
        precision=0, value=0, label="Seed",
        info="A starting point to initiate generation, use 0 for random"
    )
]

gr.ChatInterface(
    fn=generate_response,
    theme="Nymbo/Alyx_Theme",
    chatbot=gr.Chatbot(
        show_label=False,
        show_share_button=False,
        show_copy_button=True,
        likeable=True,
        layout="panel"
    ),
    additional_inputs=additional_inputs,
).launch()