BitNet.cpp / app.py
MekkCyber
update
4905514
raw
history blame
6.06 kB
import gradio as gr
import subprocess
import os
import time
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
# Path to the cloned repository
BITNET_REPO_PATH = "/home/user/app/BitNet"
SETUP_SCRIPT = os.path.join(BITNET_REPO_PATH, "setup_env.py")
INFERENCE_SCRIPT = os.path.join(BITNET_REPO_PATH, "run_inference.py")
# Function to set up the environment by running setup.py
def setup_bitnet(model_name):
try:
result = subprocess.run(
f"python {SETUP_SCRIPT} --hf-repo {model_name} -q i2_s",
shell=True,
cwd=BITNET_REPO_PATH,
capture_output=True,
text=True
)
if result.returncode == 0:
return "Setup completed successfully!"
else:
return f"Error in setup: {result.stderr}"
except Exception as e:
return str(e)
# Function to run inference using the `run_inference.py` file
def run_inference(model_name, input_text, num_tokens=6):
try:
# Call the `run_inference.py` script with the model and input
start_time = time.time()
result = subprocess.run(
f"python run_inference.py -m models/Llama3-8B-1.58-100B-tokens/ggml-model-i2_s.gguf -p \"{input_text}\" -n {num_tokens} -temp 0",
shell=True,
cwd=BITNET_REPO_PATH,
capture_output=True,
text=True
)
end_time = time.time()
if result.returncode == 0:
inference_time = round(end_time - start_time, 2)
return result.stdout, f"Inference took {inference_time} seconds."
else:
return f"Error during inference: {result.stderr}", None
except Exception as e:
return str(e), None
def run_transformers(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, input_text, num_tokens):
if oauth_token is None :
return "Error : To Compare please login to your HF account and make sure you have access to the used Llama models"
# Load the model and tokenizer dynamically if needed (commented out for performance)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=oauth_token.token)
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=oauth_token.token)
# Encode the input text
input_ids = tokenizer.encode(input_text, return_tensors="pt")
# Start time for inference
start_time = time.time()
# Generate output with the specified number of tokens
output = model.generate(input_ids, max_length=len(input_ids[0]) + num_tokens, num_return_sequences=1)
# Calculate inference time
inference_time = time.time() - start_time
# Decode the generated output
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text, f"{inference_time:.2f} seconds"
# Gradio Interface
def interface():
with gr.Blocks(css=".gr-button {background-color: #5C6BC0; color: white;} .gr-button:hover {background-color: #3F51B5;}") as demo:
gr.LoginButton(elem_id="login-button", elem_classes="center-button")
gr.Markdown(
"""
<h1 style="text-align: center; color: #4A148C;">BitNet.cpp Speed Demonstration</h1>
<p style="text-align: center; color: #6A1B9A;">Compare the speed and performance of BitNet with Transformers!</p>
""",
elem_id="header"
)
# Model selection and setup row
with gr.Row():
model_dropdown = gr.Dropdown(
label="Select Model",
choices=["HF1BitLLM/Llama3-8B-1.58-100B-tokens", "1bitLLM/bitnet_b1_58-3B", "1bitLLM/bitnet_b1_58-large"], # Replace with available models
value="HF1BitLLM/Llama3-8B-1.58-100B-tokens",
interactive=True,
elem_id="model-dropdown"
)
setup_button = gr.Button("Run Setup", elem_id="setup-button")
setup_status = gr.Textbox(label="Setup Status", interactive=False, placeholder="Setup status will appear here...")
# Inference row
with gr.Row():
num_tokens = gr.Slider(minimum=1, maximum=100, label="Number of Tokens to Generate", value=50, step=1)
input_text = gr.Textbox(label="Input Text", placeholder="Enter your input text here...")
infer_button = gr.Button("Run Inference", elem_id="infer-button")
result_output = gr.Textbox(label="Output", interactive=False, placeholder="Inference output will appear here...")
time_output = gr.Textbox(label="Inference Time", interactive=False, placeholder="Inference time will appear here...")
# Comparison with Transformers
with gr.Row():
transformer_model_dropdown = gr.Dropdown(
label="Select Transformers Model",
choices=["meta-llama/Llama-3.1-8B", "meta-llama/Llama-3.2-3B", "meta-llama/Llama-3.2-1B"], # Replace with actual models
value="meta-llama/Llama-3.1-8B",
interactive=True
)
compare_button = gr.Button("Run Transformers Inference", elem_id="compare-button")
transformer_result_output = gr.Textbox(label="Transformers Output", interactive=False, placeholder="Transformers output will appear here...")
transformer_time_output = gr.Textbox(label="Transformers Inference Time", interactive=False, placeholder="Transformers inference time will appear here...")
# Actions
setup_button.click(setup_bitnet, inputs=model_dropdown, outputs=setup_status)
infer_button.click(run_inference, inputs=[model_dropdown, input_text, num_tokens], outputs=[result_output, time_output])
compare_button.click(run_transformers, inputs=[transformer_model_dropdown, input_text, num_tokens], outputs=[transformer_result_output, transformer_time_output])
# Launch the Gradio app
return demo
demo = interface()
demo.launch()