File size: 6,057 Bytes
ec1b552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import subprocess
import os
import time
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)

# Path to the cloned repository
BITNET_REPO_PATH = "/home/myuser/app/BitNet"
SETUP_SCRIPT = os.path.join(BITNET_REPO_PATH, "setup_env.py")
INFERENCE_SCRIPT = os.path.join(BITNET_REPO_PATH, "run_inference.py")

# Function to set up the environment by running setup.py
def setup_bitnet(model_name):
    try:
        result = subprocess.run(
            f"python {SETUP_SCRIPT} --hf-repo {model_name} -q i2_s",
            shell=True,
            cwd=BITNET_REPO_PATH,
            capture_output=True,
            text=True
        )
        if result.returncode == 0:
            return "Setup completed successfully!"
        else:
            return f"Error in setup: {result.stderr}"
    except Exception as e:
        return str(e)

# Function to run inference using the `run_inference.py` file
def run_inference(model_name, input_text, num_tokens=6):
    try:
        # Call the `run_inference.py` script with the model and input
        start_time = time.time()
        result = subprocess.run(
            f"python run_inference.py -m models/Llama3-8B-1.58-100B-tokens/ggml-model-i2_s.gguf -p \"{input_text}\" -n {num_tokens} -temp 0",
            shell=True,
            cwd=BITNET_REPO_PATH,
            capture_output=True,
            text=True
        )
        end_time = time.time()
        
        if result.returncode == 0:
            inference_time = round(end_time - start_time, 2)
            return result.stdout, f"Inference took {inference_time} seconds."
        else:
            return f"Error during inference: {result.stderr}", None
    except Exception as e:
        return str(e), None

def run_transformers(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, input_text, num_tokens):

    if oauth_token is None : 
        return "Error : To Compare please login to your HF account and make sure you have access to the used Llama models"
    # Load the model and tokenizer dynamically if needed (commented out for performance)
    tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=oauth_token.token)
    model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=oauth_token.token)

    # Encode the input text
    input_ids = tokenizer.encode(input_text, return_tensors="pt")

    # Start time for inference
    start_time = time.time()

    # Generate output with the specified number of tokens
    output = model.generate(input_ids, max_length=len(input_ids[0]) + num_tokens, num_return_sequences=1)

    # Calculate inference time
    inference_time = time.time() - start_time

    # Decode the generated output
    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

    return generated_text, f"{inference_time:.2f} seconds"

# Gradio Interface
def interface():
    with gr.Blocks(css=".gr-button {background-color: #5C6BC0; color: white;} .gr-button:hover {background-color: #3F51B5;}") as demo:

        gr.LoginButton(elem_id="login-button", elem_classes="center-button")

        gr.Markdown(
            """
            <h1 style="text-align: center; color: #4A148C;">BitNet.cpp Speed Demonstration</h1>
            <p style="text-align: center; color: #6A1B9A;">Compare the speed and performance of BitNet with Transformers!</p>
            """, 
            elem_id="header"
        )

        # Model selection and setup row
        with gr.Row():
            model_dropdown = gr.Dropdown(
                label="Select Model",
                choices=["HF1BitLLM/Llama3-8B-1.58-100B-tokens", "1bitLLM/bitnet_b1_58-3B", "1bitLLM/bitnet_b1_58-large"],  # Replace with available models
                value="HF1BitLLM/Llama3-8B-1.58-100B-tokens",
                interactive=True,
                elem_id="model-dropdown"
            )
            setup_button = gr.Button("Run Setup", elem_id="setup-button")
            setup_status = gr.Textbox(label="Setup Status", interactive=False, placeholder="Setup status will appear here...")

        # Inference row
        with gr.Row():
            num_tokens = gr.Slider(minimum=1, maximum=100, label="Number of Tokens to Generate", value=50, step=1)
            input_text = gr.Textbox(label="Input Text", placeholder="Enter your input text here...")
            infer_button = gr.Button("Run Inference", elem_id="infer-button")
            result_output = gr.Textbox(label="Output", interactive=False, placeholder="Inference output will appear here...")
            time_output = gr.Textbox(label="Inference Time", interactive=False, placeholder="Inference time will appear here...")

        # Comparison with Transformers
        with gr.Row():
            transformer_model_dropdown = gr.Dropdown(
                label="Select Transformers Model",
                choices=["meta-llama/Llama-3.1-8B", "meta-llama/Llama-3.2-3B", "meta-llama/Llama-3.2-1B"],  # Replace with actual models
                value="meta-llama/Llama-3.1-8B",
                interactive=True
            )
            compare_button = gr.Button("Run Transformers Inference", elem_id="compare-button")
            transformer_result_output = gr.Textbox(label="Transformers Output", interactive=False, placeholder="Transformers output will appear here...")
            transformer_time_output = gr.Textbox(label="Transformers Inference Time", interactive=False, placeholder="Transformers inference time will appear here...")

        # Actions
        setup_button.click(setup_bitnet, inputs=model_dropdown, outputs=setup_status)
        infer_button.click(run_inference, inputs=[model_dropdown, input_text, num_tokens], outputs=[result_output, time_output])
        compare_button.click(run_transformers, inputs=[transformer_model_dropdown, input_text, num_tokens], outputs=[transformer_result_output, transformer_time_output])

# Launch the Gradio app    
    return demo

demo = interface()
demo.launch()