Spaces:
Sleeping
Sleeping
File size: 13,180 Bytes
f788018 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
from huggingface_hub import InferenceClient
import json
from bs4 import BeautifulSoup
import requests
import gradio as gr
from model import llm_models, llm_serverless_models
from prompt import llm_system_prompt
llm_clients = {}
client_main = None
current_model = None
language_codes = {"English": "en", "Japanese": "ja", "Chinese": "zh"}
llm_languages = ["language same as user input"] + list(language_codes.keys())
llm_output_language = "language same as user input"
llm_sysprompt_mode = "Default"
server_timeout = 300
def get_llm_sysprompt():
import re
prompt = re.sub('<LANGUAGE>', llm_output_language, llm_system_prompt.get(llm_sysprompt_mode, ""))
return prompt
def get_llm_sysprompt_mode():
return list(llm_system_prompt.keys())
def set_llm_sysprompt_mode(key: str):
global llm_sysprompt_mode
if not key in llm_system_prompt.keys():
llm_sysprompt_mode = "Default"
else:
llm_sysprompt_mode = key
return gr.update(value=get_llm_sysprompt())
def get_llm_language():
return llm_languages
def set_llm_language(lang: str):
global llm_output_language
llm_output_language = lang
return gr.update(value=get_llm_sysprompt())
def get_llm_model_info(model_name):
return f'Repo: [{model_name}](https://huggingface.co/{model_name})'
# Function to extract text from a webpage
def get_text_from_html(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup(["script", "style", "header", "footer"]):
tag.extract()
return soup.get_text(strip=True)
# Function to perform a web search
def get_language_code(s):
from langdetect import detect
lang = "en"
if llm_output_language == "language same as user input":
lang = detect(s)
elif llm_output_language in language_codes.keys():
lang = language_codes[llm_output_language]
return lang
def perform_search(query):
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
search_term = query
lang = get_language_code(search_term)
all_results = []
max_chars_per_page = 8000
with requests.Session() as session:
response = session.get(
url="https://www.google.com/search",
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.0.0"},
params={"q": search_term, "num": 3, "udm": 14, "hl": f"{lang}", "lr": f"lang_{lang}", "safe": "off", "pws": 0},
timeout=5,
verify=False,
)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
for result in result_block:
link = result.find("a", href=True)["href"]
try:
webpage_response = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.0.0"}, timeout=5, verify=False)
webpage_response.raise_for_status()
visible_text = get_text_from_html(webpage_response.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page]
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException:
all_results.append({"link": link, "text": None})
return all_results
# https://github.com/gradio-app/gradio/blob/main/gradio/external.py
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
def load_from_model(model_name: str, hf_token: str = None):
import httpx
import huggingface_hub
from gradio.exceptions import ModelNotFoundError
model_url = f"https://huggingface.co/{model_name}"
api_url = f"/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%3Cspan class="hljs-subst">{model_name}"
print(f"Fetching model from: {model_url}")
headers = {"Authorization": f"Bearer {hf_token}"} if hf_token is not None else {}
response = httpx.request("GET", api_url, headers=headers)
if response.status_code != 200:
raise ModelNotFoundError(
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
)
headers["X-Wait-For-Model"] = "true"
client = huggingface_hub.InferenceClient(model=model_name, headers=headers,
token=hf_token, timeout=server_timeout)
inputs = [
gr.components.Textbox(render=False),
gr.components.State(render=False),
]
outputs = [
gr.components.Chatbot(render=False),
gr.components.State(render=False),
]
fn = client.chat_completion
def query_huggingface_inference_endpoints(*data, **kwargs):
return fn(*data, **kwargs)
interface_info = {
"fn": query_huggingface_inference_endpoints,
"inputs": inputs,
"outputs": outputs,
"title": model_name,
}
return gr.Interface(**interface_info)
def get_status(model_name: str):
client = InferenceClient(timeout=10)
return client.get_model_status(model_name)
def load_clients():
global llm_clients
for model in llm_serverless_models:
status = get_status(model)
#print(f"HF model status: {status}")
if status is None or status.state not in ["Loadable", "Loaded"]: #
print(f"Failed to load by serverless inference API: {model}. Model state is {status.state}")
continue
try:
print(f"Fetching model by serverless inference API: {model}")
llm_clients[model] = InferenceClient(model)
except Exception as e:
print(e)
print(f"Failed to load by serverless inference API: {model}")
continue
print(f"Loaded by serverless inference API: {model}")
for model in llm_models:
if model in llm_clients.keys(): continue
status = get_status(model)
#print(f"HF model status: {status}")
if status is None or status.state not in ["Loadable", "Loaded"]: #
print(f"Failed to load: {model}. Model state is {status.state}")
continue
try:
llm_clients[model] = load_from_model(model)
except Exception as e:
print(e)
print(f"Failed to load: {model}")
continue
print(f"Loaded: {model}")
def add_client(model_name: str):
global llm_clients
try:
status = get_status(model_name)
#print(f"HF model status: {status}")
if status is None or status.state not in ["Loadable", "Loaded"]: #
print(f"Failed to load: {model_name}. Model state is {status.state}")
new_client = None
else: new_client = InferenceClient(model_name)
except Exception as e:
print(e)
new_client = None
if new_client:
print(f"Loaded by serverless inference API: {model_name}")
llm_clients[model_name] = new_client
return new_client
else:
print(f"Failed to load: {model_name}")
return llm_clients.get(llm_serverless_models[0], None)
def set_llm_model(model_name: str = llm_serverless_models[0]):
global client_main
global current_model
if model_name in llm_clients.keys():
client_main = llm_clients.get(model_name, None)
else:
client_main = add_client(model_name)
if client_main is not None:
current_model = model_name
print(f"Model selected: {model_name}")
print(f"HF model status: {get_status(model_name)}")
return model_name, get_llm_model_info(model_name)
else: return None, "None"
def get_llm_model():
return list(llm_clients.keys())
# Initialize inference clients
load_clients()
set_llm_model()
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
# https://huggingface.co/docs/huggingface_hub/v0.24.5/en/package_reference/inference_client#huggingface_hub.InferenceClient.chat_completion
def chat_body(message, history, query, tokens, temperature, top_p, fpenalty, web_summary):
system_prompt = get_llm_sysprompt()
if query and web_summary:
messages = []
messages.append({"role": "system", "content": system_prompt})
for msg in history:
messages.append({"role": "user", "content": str(msg[0])})
messages.append({"role": "assistant", "content": str(msg[1])})
messages.append({"role": "user", "content": f"{message}\nweb_result\n{web_summary}"})
messages.append({"role": "assistant", "content": ""})
try:
if isinstance(client_main, gr.Interface):
stream = client_main.fn(messages=messages, max_tokens=tokens, temperature=temperature,
top_p=top_p, frequency_penalty=fpenalty, stream=True)
else:
stream = client_main.chat_completion(messages=messages, max_tokens=tokens, temperature=temperature,
top_p=top_p, stream=True)
except Exception as e:
print(e)
stream = []
output = ""
for response in stream:
if response and response.choices and response.choices[0].delta.content is not None:
output += response.choices[0].delta.content
yield [(output, None)]
else:
messages = []
messages.append({"role": "system", "content": system_prompt})
for msg in history:
messages.append({"role": "user", "content": str(msg[0])})
messages.append({"role": "assistant", "content": str(msg[1])})
messages.append({"role": "user", "content": message})
messages.append({"role": "assistant", "content": ""})
try:
if isinstance(client_main, gr.Interface):
stream = client_main.fn(messages=messages, max_tokens=tokens, temperature=temperature,
top_p=top_p, stream=True)
else:
stream = client_main.chat_completion(messages=messages, max_tokens=tokens, temperature=temperature,
top_p=top_p, stream=True)
except Exception as e:
print(e)
stream = []
output = ""
for response in stream:
if response and response.choices and response.choices[0].delta.content is not None:
output += response.choices[0].delta.content
yield [(output, None)]
def get_web_summary(history, query_message):
if not query_message: return ""
func_calls = []
functions_metadata = [
{"type": "function", "function": {"name": "web_search", "description": "Search query on Google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Web search query"}}, "required": ["query"]}}},
]
for msg in history:
func_calls.append({"role": "user", "content": f"{str(msg[0])}"})
func_calls.append({"role": "assistant", "content": f"{str(msg[1])}"})
func_calls.append({"role": "user", "content": f'[SYSTEM] You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {query_message}'})
response = client_gemma.chat_completion(func_calls, max_tokens=200)
response = str(response)
try:
response = response[int(response.find("{")):int(response.rindex("}"))+1]
except:
response = response[int(response.find("{")):(int(response.rfind("}"))+1)]
response = response.replace("\\n", "").replace("\\'", "'").replace('\\"', '"').replace('\\', '')
#print(f"\n{response}")
try:
json_data = json.loads(str(response))
if json_data["name"] == "web_search":
query = json_data["arguments"]["query"]
#gr.Info("Searching Web")
web_results = perform_search(query)
#gr.Info("Extracting relevant Info")
web_summary = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results if res['text']])
return web_summary
else:
return ""
except:
return ""
# Function to handle responses
def chat_response(message, history, query, tokens, temperature, top_p, fpenalty):
if history is None: history = []
yield from chat_body(message, history, query, tokens, temperature, top_p, fpenalty, get_web_summary(history, query))
|