Spaces:
Runtime error
Runtime error
import gradio as gr | |
from Models import VisionModel | |
import huggingface_hub | |
from PIL import Image | |
import torch.amp.autocast_mode | |
from pathlib import Path | |
import torch | |
import torchvision.transforms.functional as TVF | |
MODEL_REPO = "fancyfeast/joytag" | |
THRESHOLD = 0.4 | |
DESCRIPTION = """ | |
Demo for the automatic image tagging | |
""" | |
def prepare_image(image: Image.Image, target_size: int) -> torch.Tensor: | |
# Pad image to square | |
image_shape = image.size | |
max_dim = max(image_shape) | |
pad_left = (max_dim - image_shape[0]) // 2 | |
pad_top = (max_dim - image_shape[1]) // 2 | |
padded_image = Image.new('RGB', (max_dim, max_dim), (255, 255, 255)) | |
padded_image.paste(image, (pad_left, pad_top)) | |
# Resize image | |
if max_dim != target_size: | |
padded_image = padded_image.resize((target_size, target_size), Image.BICUBIC) | |
# Convert to tensor | |
image_tensor = TVF.pil_to_tensor(padded_image) / 255.0 | |
# Normalize | |
image_tensor = TVF.normalize(image_tensor, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]) | |
return image_tensor | |
def predict(image: Image.Image): | |
image_tensor = prepare_image(image, model.image_size) | |
batch = { | |
'image': image_tensor.unsqueeze(0), | |
} | |
with torch.amp.autocast_mode.autocast('cpu', enabled=True): | |
preds = model(batch) | |
tag_preds = preds['tags'].sigmoid().cpu() | |
scores = {top_tags[i]: tag_preds[0][i] for i in range(len(top_tags))} | |
predicted_tags = [tag for tag, score in scores.items() if score > THRESHOLD] | |
tag_string = ', '.join(predicted_tags) | |
return tag_string, scores | |
print("Downloading model...") | |
path = huggingface_hub.snapshot_download(MODEL_REPO) | |
print("Loading model...") | |
model = VisionModel.load_model(path) | |
model.eval() | |
with open(Path(path) / 'top_tags.txt', 'r') as f: | |
top_tags = [line.strip() for line in f.readlines() if line.strip()] | |
print("Starting server...") | |
gradio_app = gr.Interface( | |
predict, | |
inputs=gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), | |
outputs=[ | |
gr.Textbox(label="Tag String"), | |
gr.Label(label="Tag Predictions", num_top_classes=100), | |
], | |
title="JoyTag", | |
description=DESCRIPTION, | |
allow_flagging="never", | |
) | |
if __name__ == '__main__': | |
gradio_app.launch() | |