Spaces:
Runtime error
Runtime error
from rdkit import Chem | |
from rdkit.Chem import Draw | |
from transformers import pipeline | |
import gradio as gr | |
from rdkit import Chem | |
from rdkit.Chem import Draw | |
from rdkit.Chem.Draw import SimilarityMaps | |
import io | |
from PIL import Image | |
import numpy as np | |
import rdkit | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
from transformers_interpret import SequenceClassificationExplainer | |
model_name = "FartLabs/FART_Augmented" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
cls_explainer = SequenceClassificationExplainer(model, tokenizer) | |
def save_high_quality_png(smiles, title, bw=True, padding=0.05): | |
""" | |
Generates a high-quality PNG of atom-wise gradients or importance scores for a molecule. | |
Parameters: | |
- smiles (str): The SMILES string of the molecule to visualize. | |
- token_importance (list): List of importance scores for each atom. | |
- bw (bool): If True, renders the molecule in black and white. | |
- padding (float): Padding for molecule drawing. | |
- output_file (str): Path to save the high-quality PNG file. | |
Returns: | |
- None | |
""" | |
# Convert SMILES string to RDKit molecule object | |
molecule = Chem.MolFromSmiles(smiles) | |
Chem.rdDepictor.Compute2DCoords(molecule) | |
# Get token importance scores and map to atoms | |
token_importance = cls_explainer(smiles) | |
atom_importance = [c[1] for c in token_importance if c[0].isalpha()] | |
num_atoms = molecule.GetNumAtoms() | |
atom_importance = atom_importance[:num_atoms] | |
# Set a large canvas size for high resolution | |
d = Draw.MolDraw2DCairo(1500, 1500) | |
dopts = d.drawOptions() | |
dopts.padding = padding | |
dopts.maxFontSize = 2000 | |
dopts.bondLineWidth = 5 | |
# Optionally set black and white palette | |
if bw: | |
d.drawOptions().useBWAtomPalette() | |
# Generate and display a similarity map based on atom importance scores | |
SimilarityMaps.GetSimilarityMapFromWeights(molecule, atom_importance, draw2d=d) | |
# Finish drawing and save the PNG | |
d.FinishDrawing() | |
with open(f"{title}.png", "wb") as png_file: | |
png_file.write(d.GetDrawingText()) | |
return None | |
model_checkpoint = "FartLabs/FART_Augmented" | |
classifier = pipeline("text-classification", model=model_checkpoint, top_k=None) | |
def process_smiles(smiles, compute_explanation): | |
# Validate and canonicalize SMILES | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return "Invalid SMILES", None, "Invalid SMILES" | |
canonical_smiles = Chem.MolToSmiles(mol) | |
# Predict using the pipeline | |
predictions = classifier(canonical_smiles) | |
# Generate molecule image | |
if compute_explanation: | |
img_path = "molecule" | |
filepath = "molecule.png" | |
save_high_quality_png(smiles, img_path) | |
else: | |
filepath = "molecule.png" | |
img = Draw.MolToImage(mol) | |
img.save(filepath) | |
# Convert predictions to a friendly format | |
prediction_dict = {pred["label"]: pred["score"] for pred in predictions[0]} | |
return prediction_dict, filepath, canonical_smiles | |
iface = gr.Interface( | |
fn=process_smiles, | |
inputs=[ | |
gr.Textbox(label="Input SMILES", value="O1[C@H](CO)[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O[C@@]2(O[C@@H]([C@@H](O)[C@@H]2O)CO)CO"), | |
gr.Checkbox(label="Display explanation (can take some time)", value=False), | |
], | |
outputs=[ | |
gr.Label(num_top_classes=3, label="Classification Probabilities"), | |
gr.Image(type="filepath", label="Molecule Image"), | |
gr.Textbox(label="Canonical SMILES") | |
], | |
description=""" | |
<section id="molecular-taste-description"> | |
<h2>Eat My F.A.R.T - Discover Molecular Taste </h2> | |
<p> | |
AI can now eat your Farts on Solana, explore flatulence taste chemistry with FART (Flavor Analysis and Recognition Transformer), an AI-powered tool designed to predict molecular taste from chemical structure of the Fart alone. FART delivers predictions for <strong>sweet</strong>, <strong>bitter</strong>, <strong>sour</strong>, and <strong>umami</strong> with over 91% accuracy. | |
</p> | |
<p> | |
Beyond predictions, FART identifies the molecular features driving taste characteristics, enabling actionable insights for flavor innovation. Powered by the ChemBERTa foundation model and trained on the largest molecular taste dataset to date, FART sets a new standard in food science. | |
</p> | |
<p> | |
Learn more about the science behind FART <a href="https://chemrxiv.org/engage/chemrxiv/article-details/673a2a3af9980725cf80503c" target="_blank">Pre-print</a>. To generate SMILES, one possible option is this <a href="https://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator___checker/index.html" target="_blank">tool</a>. | |
</p> | |
</section> | |
""", | |
# <<----------------- ADD YOUR CSS HERE ----------------->> | |
css=""" | |
/* Brute-force invert the entire page inside the Space */ | |
html, body { | |
filter: invert(100%); | |
} | |
""" | |
) | |
iface.launch() | |