File size: 7,483 Bytes
17a5d51
 
05cd3fd
17a5d51
 
 
 
 
05cd3fd
17a5d51
 
05cd3fd
17a5d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import json
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
from sentence_splitter import SentenceSplitter
from itertools import product

# Get the Hugging Face token from environment variable
hf_token = os.getenv('HF_TOKEN')

cuda_available = torch.cuda.is_available()
device = torch.device("cuda" if cuda_available else "cpu")
print(f"Using device: {device}")

# Initialize paraphraser model and tokenizer
paraphraser_model_name = "NoaiGPT/777"
paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, use_auth_token=hf_token)
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name, use_auth_token=hf_token).to(device)

# Initialize classifier model and tokenizer
classifier_model_name = "andreas122001/roberta-mixed-detector"
classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)

# Initialize sentence splitter
splitter = SentenceSplitter(language='en')

def classify_text(text):
    inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
    with torch.no_grad():
        outputs = classifier_model(**inputs)
    probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predicted_class = torch.argmax(probabilities, dim=-1).item()
    main_label = classifier_model.config.id2label[predicted_class]
    main_score = probabilities[0][predicted_class].item()
    return main_label, main_score

@spaces.GPU
def generate_paraphrases(text, setting, output_format):
    sentences = splitter.split(text)
    all_sentence_paraphrases = []
    
    if setting == 1:
        num_return_sequences = 5
        repetition_penalty = 1.1
        no_repeat_ngram_size = 2
        temperature = 1.0
        max_length = 128
    elif setting == 2:
        num_return_sequences = 10
        repetition_penalty = 1.2
        no_repeat_ngram_size = 3
        temperature = 1.2
        max_length = 192
    elif setting == 3:
        num_return_sequences = 15
        repetition_penalty = 1.3
        no_repeat_ngram_size = 4
        temperature = 1.4
        max_length = 256
    elif setting == 4:
        num_return_sequences = 20
        repetition_penalty = 1.4
        no_repeat_ngram_size = 5
        temperature = 1.6
        max_length = 320
    else:
        num_return_sequences = 25
        repetition_penalty = 1.5
        no_repeat_ngram_size = 6
        temperature = 1.8
        max_length = 384
    
    top_k = 50
    top_p = 0.95
    length_penalty = 1.0
    
    formatted_output = "Original text:\n" + text + "\n\n"
    formatted_output += "Paraphrased versions:\n"
    
    json_output = {
        "original_text": text,
        "paraphrased_versions": [],
        "combined_versions": [],
        "human_like_versions": []
    }
    
    for i, sentence in enumerate(sentences):
        inputs = paraphraser_tokenizer(f'paraphraser: {sentence}', return_tensors="pt", padding="longest", truncation=True, max_length=max_length).to(device)
        
        # Generate paraphrases using the specified parameters
        outputs = paraphraser_model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            num_return_sequences=num_return_sequences,
            repetition_penalty=repetition_penalty,
            no_repeat_ngram_size=no_repeat_ngram_size,
            temperature=temperature,
            max_length=max_length,
            top_k=top_k,
            top_p=top_p,
            do_sample=True,
            early_stopping=False,
            length_penalty=length_penalty
        )
        
        paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
        
        formatted_output += f"Original sentence {i+1}: {sentence}\n"
        for j, paraphrase in enumerate(paraphrases, 1):
            formatted_output += f"  Paraphrase {j}: {paraphrase}\n"
        
        json_output["paraphrased_versions"].append({
            f"original_sentence_{i+1}": sentence,
            "paraphrases": paraphrases
        })
        
        all_sentence_paraphrases.append(paraphrases)
        formatted_output += "\n"
    
    all_combinations = list(product(*all_sentence_paraphrases))
    
    formatted_output += "\nCombined paraphrased versions:\n"
    combined_versions = []
    for i, combination in enumerate(all_combinations[:50], 1):  # Limit to 50 combinations
        combined_paraphrase = " ".join(combination)
        combined_versions.append(combined_paraphrase)
    
    json_output["combined_versions"] = combined_versions
    
    # Classify combined versions
    human_versions = []
    for i, version in enumerate(combined_versions, 1):
        label, score = classify_text(version)
        formatted_output += f"Version {i}:\n{version}\n"
        formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
        if label == "human-produced" or (label == "machine-generated" and score < 0.98):
            human_versions.append((version, label, score))
    
    formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
    for i, (version, label, score) in enumerate(human_versions, 1):
        formatted_output += f"Version {i}:\n{version}\n"
        formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
    
    json_output["human_like_versions"] = [
        {"version": version, "label": label, "confidence_score": score}
        for version, label, score in human_versions
    ]
    
    # If no human-like versions, include the top 5 least confident machine-generated versions
    if not human_versions:
        human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
        formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
        for i, (version, label, score) in enumerate(human_versions, 1):
            formatted_output += f"Version {i}:\n{version}\n"
            formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
    
    if output_format == "text":
        return formatted_output, "\n\n".join([v[0] for v in human_versions])
    else:
        return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])

# Define the Gradio interface
iface = gr.Interface(
    fn=generate_paraphrases,
    inputs=[
        gr.Textbox(lines=5, label="Input Text"),
        gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
        gr.Radio(["text", "json"], label="Output Format")
    ],
    outputs=[
        gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
        gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
    ],
    title="Advanced Diverse Paraphraser with Human-like Filter",
    description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
)

# Launch the interface
iface.launch()