|
import streamlit as st |
|
import os |
|
from langchain_groq import ChatGroq |
|
from langchain_community.embeddings import HuggingFaceBgeEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.chains.combine_documents import create_stuff_documents_chain |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain.chains import create_retrieval_chain |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.document_loaders import PyPDFDirectoryLoader |
|
import time |
|
|
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
|
|
groq_api_key = os.getenv("GROQ_API_KEY") |
|
|
|
|
|
if not groq_api_key: |
|
st.error("GROQ_API_KEY environment variable is not set") |
|
st.stop() |
|
|
|
|
|
try: |
|
llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192") |
|
except Exception as e: |
|
st.error(f"Failed to initialize ChatGroq LLM: {e}") |
|
st.stop() |
|
|
|
|
|
st.title("DataScience Chatgroq With Llama3") |
|
|
|
prompt = ChatPromptTemplate.from_template( |
|
""" |
|
Answer the questions based on the provided context only. |
|
Please provide the most accurate response based on the question. |
|
<context> |
|
{context} |
|
<context> |
|
Questions: {input} |
|
""" |
|
) |
|
|
|
def vector_embedding(): |
|
if "vectors" not in st.session_state: |
|
st.session_state.embeddings=HuggingFaceBgeEmbeddings(model_name="BAAI/bge-small-en-v1.5", |
|
model_kwargs={'device':'cpu'}, |
|
encode_kwargs={'normalize_embeddings':True}) |
|
st.session_state.loader = PyPDFDirectoryLoader("./Data_Science") |
|
st.session_state.docs = st.session_state.loader.load() |
|
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) |
|
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) |
|
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) |
|
st.write("Vector Store DB Is Ready") |
|
else: |
|
st.write("Vectors already initialized.") |
|
|
|
prompt1 = st.text_input("Enter Your Question From Documents") |
|
|
|
if st.button("Documents Embedding"): |
|
vector_embedding() |
|
|
|
if prompt1: |
|
if "vectors" not in st.session_state: |
|
st.error("Vectors Intialisation may take Some time.After getting the message 'Vector Store DB is Ready' you get fast answers") |
|
else: |
|
document_chain = create_stuff_documents_chain(llm, prompt) |
|
retriever = st.session_state.vectors.as_retriever() |
|
retrieval_chain = create_retrieval_chain(retriever, document_chain) |
|
try: |
|
start = time.process_time() |
|
response = retrieval_chain.invoke({'input': prompt1}) |
|
st.write("Response time: ", time.process_time() - start) |
|
st.write(response['answer']) |
|
|
|
with st.expander("Document Similarity Search"): |
|
for i, doc in enumerate(response["context"]): |
|
st.write(doc.page_content) |
|
st.write("--------------------------------") |
|
except Exception as e: |
|
st.error(f"Failed to retrieve the answer: {e}") |