CRISPRTool / cas9attvcf.py
supercat666's picture
add vcf
26e7c05
import requests
import tensorflow as tf
import pandas as pd
import numpy as np
from operator import add
from functools import reduce
import random
import tabulate
from keras import Model
from keras import regularizers
from keras.optimizers import Adam
from keras.layers import Conv2D, BatchNormalization, ReLU, Input, Flatten, Softmax
from keras.layers import Concatenate, Activation, Dense, GlobalAveragePooling2D, Dropout
from keras.layers import AveragePooling1D, Bidirectional, LSTM, GlobalAveragePooling1D, MaxPool1D, Reshape
from keras.layers import LayerNormalization, Conv1D, MultiHeadAttention, Layer
from keras.models import load_model
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
import cyvcf2
import parasail
import re
ntmap = {'A': (1, 0, 0, 0),
'C': (0, 1, 0, 0),
'G': (0, 0, 1, 0),
'T': (0, 0, 0, 1)
}
def get_seqcode(seq):
return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape((1, len(seq), -1))
class PositionalEncoding(Layer):
def __init__(self, sequence_len=None, embedding_dim=None,**kwargs):
super(PositionalEncoding, self).__init__()
self.sequence_len = sequence_len
self.embedding_dim = embedding_dim
def call(self, x):
position_embedding = np.array([
[pos / np.power(10000, 2. * i / self.embedding_dim) for i in range(self.embedding_dim)]
for pos in range(self.sequence_len)])
position_embedding[:, 0::2] = np.sin(position_embedding[:, 0::2]) # dim 2i
position_embedding[:, 1::2] = np.cos(position_embedding[:, 1::2]) # dim 2i+1
position_embedding = tf.cast(position_embedding, dtype=tf.float32)
return position_embedding+x
def get_config(self):
config = super().get_config().copy()
config.update({
'sequence_len' : self.sequence_len,
'embedding_dim' : self.embedding_dim,
})
return config
def MultiHeadAttention_model(input_shape):
input = Input(shape=input_shape)
conv1 = Conv1D(256, 3, activation="relu")(input)
pool1 = AveragePooling1D(2)(conv1)
drop1 = Dropout(0.4)(pool1)
conv2 = Conv1D(256, 3, activation="relu")(drop1)
pool2 = AveragePooling1D(2)(conv2)
drop2 = Dropout(0.4)(pool2)
lstm = Bidirectional(LSTM(128,
dropout=0.5,
activation='tanh',
return_sequences=True,
kernel_regularizer=regularizers.l2(0.01)))(drop2)
pos_embedding = PositionalEncoding(sequence_len=int(((23-3+1)/2-3+1)/2), embedding_dim=2*128)(lstm)
atten = MultiHeadAttention(num_heads=2,
key_dim=64,
dropout=0.2,
kernel_regularizer=regularizers.l2(0.01))(pos_embedding, pos_embedding)
flat = Flatten()(atten)
dense1 = Dense(512,
kernel_regularizer=regularizers.l2(1e-4),
bias_regularizer=regularizers.l2(1e-4),
activation="relu")(flat)
drop3 = Dropout(0.1)(dense1)
dense2 = Dense(128,
kernel_regularizer=regularizers.l2(1e-4),
bias_regularizer=regularizers.l2(1e-4),
activation="relu")(drop3)
drop4 = Dropout(0.1)(dense2)
dense3 = Dense(256,
kernel_regularizer=regularizers.l2(1e-4),
bias_regularizer=regularizers.l2(1e-4),
activation="relu")(drop4)
drop5 = Dropout(0.1)(dense3)
output = Dense(1, activation="linear")(drop5)
model = Model(inputs=[input], outputs=[output])
return model
def fetch_ensembl_transcripts(gene_symbol):
url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
gene_data = response.json()
if 'Transcript' in gene_data:
return gene_data['Transcript']
else:
print("No transcripts found for gene:", gene_symbol)
return None
else:
print(f"Error fetching gene data from Ensembl: {response.text}")
return None
def fetch_ensembl_sequence(transcript_id):
url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
sequence_data = response.json()
if 'seq' in sequence_data:
return sequence_data['seq']
else:
print("No sequence found for transcript:", transcript_id)
return None
else:
print(f"Error fetching sequence data from Ensembl: {response.text}")
return None
def apply_mutation(ref_sequence, offset, ref, alt):
"""
Apply a single mutation to the sequence.
"""
if len(ref) == len(alt) and alt != "*": # SNP
mutated_seq = ref_sequence[:offset] + alt + ref_sequence[offset+len(alt):]
elif len(ref) < len(alt): # Insertion
mutated_seq = ref_sequence[:offset] + alt + ref_sequence[offset+1:]
elif len(ref) == len(alt) and alt == "*": # Deletion
mutated_seq = ref_sequence[:offset] + ref_sequence[offset+1:]
elif len(ref) > len(alt) and alt != "*": # Deletion
mutated_seq = ref_sequence[:offset] + alt + ref_sequence[offset+len(ref):]
elif len(ref) > len(alt) and alt == "*": # Deletion
mutated_seq = ref_sequence[:offset] + ref_sequence[offset+len(ref):]
return mutated_seq
def construct_combinations(sequence, mutations):
"""
Construct all combinations of mutations.
mutations is a list of tuples (position, ref, [alts])
"""
if not mutations:
return [sequence]
# Take the first mutation and recursively construct combinations for the rest
first_mutation = mutations[0]
rest_mutations = mutations[1:]
offset, ref, alts = first_mutation
sequences = []
for alt in alts:
mutated_sequence = apply_mutation(sequence, offset, ref, alt)
sequences.extend(construct_combinations(mutated_sequence, rest_mutations))
return sequences
def needleman_wunsch_alignment(query_seq, ref_seq):
"""
Use Needleman-Wunsch alignment to find the maximum alignment position in ref_seq
Use this position to represent the position of target sequence with mutations
"""
# Needleman-Wunsch alignment
alignment = parasail.nw_trace(query_seq, ref_seq, 10, 1, parasail.blosum62)
# extract CIGAR object
cigar = alignment.cigar
cigar_string = cigar.decode.decode("utf-8")
# record ref_pos
ref_pos = 0
matches = re.findall(r'(\d+)([MIDNSHP=X])', cigar_string)
max_num_before_equal = 0
max_equal_index = -1
total_before_max_equal = 0
for i, (num_str, op) in enumerate(matches):
num = int(num_str)
if op == '=':
if num > max_num_before_equal:
max_num_before_equal = num
max_equal_index = i
total_before_max_equal = sum(int(matches[j][0]) for j in range(max_equal_index))
ref_pos = total_before_max_equal
return ref_pos
def find_gRNA_with_mutation(ref_sequence, exon_chr, start, end, strand, transcript_id,
exon_id, gene_symbol, vcf_reader, pam="NGG", target_length=20):
# initialization
mutated_sequences = [ref_sequence]
# find mutations within interested region
mutations = vcf_reader(f"{exon_chr}:{start}-{end}")
if mutations:
# find mutations
mutation_list = []
for mutation in mutations:
offset = mutation.POS - start
ref = mutation.REF
alts = mutation.ALT[:-1]
mutation_list.append((offset, ref, alts))
# replace reference sequence of mutation
mutated_sequences = construct_combinations(ref_sequence, mutation_list)
# find gRNA in ref_sequence or all mutated_sequences
targets = []
for seq in mutated_sequences:
len_sequence = len(seq)
dnatorna = {'A': 'A', 'T': 'U', 'C': 'C', 'G': 'G'}
for i in range(len_sequence - len(pam) + 1):
if seq[i + 1:i + 3] == pam[1:]:
if i >= target_length:
target_seq = seq[i - target_length:i + 3]
pos = ref_sequence.find(target_seq)
if pos != -1:
is_mut = False
if strand == -1:
tar_start = end - pos - target_length - 2
else:
tar_start = start + pos
else:
is_mut = True
nw_pos = needleman_wunsch_alignment(target_seq, ref_sequence)
if strand == -1:
tar_start = str(end - nw_pos - target_length - 2) + '*'
else:
tar_start = str(start + nw_pos) + '*'
gRNA = ''.join([dnatorna[base] for base in seq[i - target_length:i]])
targets.append([target_seq, gRNA, exon_chr, str(strand), str(tar_start), transcript_id, exon_id, gene_symbol, is_mut])
# filter duplicated targets
unique_targets_set = set(tuple(element) for element in targets)
unique_targets = [list(element) for element in unique_targets_set]
return unique_targets
def format_prediction_output_with_mutation(targets, model_path):
model = MultiHeadAttention_model(input_shape=(23, 4))
model.load_weights(model_path)
formatted_data = []
for target in targets:
# Encode the gRNA sequence
encoded_seq = get_seqcode(target[0])
# Predict on-target efficiency using the model
prediction = float(list(model.predict(encoded_seq, verbose=0)[0])[0])
if prediction > 100:
prediction = 100
# Format output
gRNA = target[1]
exon_chr = target[2]
strand = target[3]
tar_start = target[4]
transcript_id = target[5]
exon_id = target[6]
gene_symbol = target[7]
is_mut = target[8]
formatted_data.append([gene_symbol, exon_chr, strand, tar_start, transcript_id,
exon_id, target[0], gRNA, prediction, is_mut])
return formatted_data
def process_gene(gene_symbol, vcf_reader, model_path):
transcripts = fetch_ensembl_transcripts(gene_symbol)
results = []
all_exons = [] # To accumulate all exons
all_gene_sequences = [] # To accumulate all gene sequences
if transcripts:
for transcript in transcripts:
Exons = transcript['Exon']
all_exons.extend(Exons) # Add all exons from this transcript to the list
transcript_id = transcript['id']
for Exon in Exons:
exon_id = Exon['id']
gene_sequence = fetch_ensembl_sequence(exon_id) # Reference exon sequence
if gene_sequence:
all_gene_sequences.append(gene_sequence) # Add this gene sequence to the list
exon_chr = Exon['seq_region_name']
start = Exon['start']
end = Exon['end']
strand = Exon['strand']
targets = find_gRNA_with_mutation(gene_sequence, exon_chr, start, end, strand,
transcript_id, exon_id, gene_symbol, vcf_reader)
if targets:
# Predict on-target efficiency for each gRNA site including mutations
formatted_data = format_prediction_output_with_mutation(targets, model_path)
results.extend(formatted_data)
else:
print(f"Failed to retrieve gene sequence for exon {exon_id}.")
else:
print("Failed to retrieve transcripts.")
# Return the sorted output, combined gene sequences, and all exons
return results, all_gene_sequences, all_exons
def create_genbank_features(data):
features = []
# If the input data is a DataFrame, convert it to a list of lists
if isinstance(data, pd.DataFrame):
formatted_data = data.values.tolist()
elif isinstance(data, list):
formatted_data = data
else:
raise TypeError("Data should be either a list or a pandas DataFrame.")
for row in formatted_data:
try:
start = int(row[1])
end = start + len(row[6]) # Calculate the end position based on the target sequence length
except ValueError as e:
print(f"Error converting start/end to int: {row[1]}, {row[2]} - {e}")
continue
strand = 1 if row[3] == '1' else -1
location = FeatureLocation(start=start, end=end, strand=strand)
is_mutation = 'Yes' if row[9] else 'No'
feature = SeqFeature(location=location, type="misc_feature", qualifiers={
'label': row[7], # Use gRNA as the label
'note': f"Prediction: {row[8]}, Mutation: {is_mutation}" # Include the prediction score and mutation status
})
features.append(feature)
return features
def generate_genbank_file_from_df(df, gene_sequence, gene_symbol, output_path):
# Ensure gene_sequence is a string before creating Seq object
if not isinstance(gene_sequence, str):
gene_sequence = str(gene_sequence)
features = create_genbank_features(df)
# Now gene_sequence is guaranteed to be a string, suitable for Seq
seq_obj = Seq(gene_sequence)
record = SeqRecord(seq_obj, id=gene_symbol, name=gene_symbol,
description=f'CRISPR Cas9 predicted targets for {gene_symbol}', features=features)
record.annotations["molecule_type"] = "DNA"
SeqIO.write(record, output_path, "genbank")
def create_bed_file_from_df(df, output_path):
with open(output_path, 'w') as bed_file:
for index, row in df.iterrows():
chrom = row["Chr"]
start = int(row["Target Start"])
end = start + len(row["Target"]) # Calculate the end position based on the target sequence length
strand = '+' if row["Strand"] == '1' else '-'
gRNA = row["gRNA"]
score = str(row["Prediction"])
is_mutation = 'Yes' if row["Is Mutation"] else 'No'
# transcript_id is not typically part of the standard BED columns but added here for completeness
transcript_id = row["Transcript"]
# Writing only standard BED columns; additional columns can be appended as needed
bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\t{is_mutation}\n")
def create_csv_from_df(df, output_path):
df.to_csv(output_path, index=False)