Add-it / app.py
NikhilJoson's picture
Update app.py
5eea90e verified
#Importing required libraries
import spaces
import gradio as gr
import os
import random
import numpy as np
import cv2
from PIL import Image
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
import torch
import google.generativeai as genai
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline, T5EncoderModel, CLIPTextModel
from diffusers import FluxTransformer2DModel, FluxInpaintPipeline
MARKDOWN = """
# Add-It🎨
Add or Replace anything to any image by using a single Prompt and an Image.
Made using [Flux (Schnell)](https://huggingface.co/black-forest-labs/FLUX.1-schnell), [Grounding-DINO](https://huggingface.co/docs/transformers/main/en/model_doc/grounding-dino) and [SAM](https://huggingface.co/docs/transformers/en/model_doc/sam).
"""
#Gemini Setup
genai.configure(api_key = os.environ['Gemini_API'])
gemini_flash = genai.GenerativeModel(model_name='gemini-1.5-flash-002')
def gemini_predict(prompt):
system_message = f"""You are the best text analyser.
You have to analyse a user query and identify what the user wants to change, from a given user query.
Examples:
Query: Change Lipstick colour to blue
Response: Lips
Query: Add a nose stud
Response: Nose
Query: Add a wallpaper to the right wall
Response: Right wall
Query: Change the Sofa's colour to Purple
Response: Sofa
Your response should be in 1 or 2-3 words
Query : {prompt}
"""
response = gemini_flash.generate_content(system_message)
return(str(response.text)[:-1])
MAX_SEED = np.iinfo(np.int32).max
SAM_device = "cuda" # or "cpu"
DEVICE = "cuda"
###GroundingDINO & SAM Setup
#To store DINO results
@dataclass
class BoundingBox:
xmin: int
ymin: int
xmax: int
ymax: int
@property
def xyxy(self) -> List[float]:
return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
score: float
label: str
box: BoundingBox
mask: Optional[np.array] = None
@classmethod
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
return cls(score=detection_dict['score'],
label=detection_dict['label'],
box=BoundingBox(xmin=detection_dict['box']['xmin'],
ymin=detection_dict['box']['ymin'],
xmax=detection_dict['box']['xmax'],
ymax=detection_dict['box']['ymax']))
#Utility Functions for Mask Generation
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
# Find contours in the binary mask
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Find the contour with the largest area
largest_contour = max(contours, key=cv2.contourArea)
# Extract the vertices of the contour
polygon = largest_contour.reshape(-1, 2).tolist()
return polygon
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
"""
Convert a polygon to a segmentation mask.
Args:
- polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
- image_shape (tuple): Shape of the image (height, width) for the mask.
Returns:
- np.ndarray: Segmentation mask with the polygon filled.
"""
# Create an empty mask
mask = np.zeros(image_shape, dtype=np.uint8)
# Convert polygon to an array of points
pts = np.array(polygon, dtype=np.int32)
# Fill the polygon with white color (255)
cv2.fillPoly(mask, [pts], color=(255,))
return mask
def get_boxes(results: DetectionResult) -> List[List[List[float]]]:
boxes = []
for result in results:
xyxy = result.box.xyxy
boxes.append(xyxy)
return [boxes]
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
masks = masks.cpu().float()
masks = masks.permute(0, 2, 3, 1)
masks = masks.mean(axis=-1)
masks = (masks > 0).int()
masks = masks.numpy().astype(np.uint8)
masks = list(masks)
#print(masks)
if polygon_refinement:
for idx, mask in enumerate(masks):
shape = mask.shape
polygon = mask_to_polygon(mask)
mask = polygon_to_mask(polygon, shape)
masks[idx] = mask
return masks
def get_alphacomp_mask(mask, image, random_color=True):
annotated_frame_pil = Image.fromarray(image).convert("RGBA")
mask_image_pil = Image.fromarray(mask).convert("RGBA")
return np.array(Image.alpha_composite(annotated_frame_pil, mask_image_pil))
# Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion.
detector_id = "IDEA-Research/grounding-dino-tiny"
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=SAM_device)
#Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes.
segmenter_id = "facebook/sam-vit-base"
processor = AutoProcessor.from_pretrained(segmenter_id)
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(SAM_device)
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3) -> List[Dict[str, Any]]:
labels = [label if label.endswith(".") else label+"." for label in labels]
with torch.no_grad():
results = object_detector(image, candidate_labels=labels, threshold=threshold)
torch.cuda.empty_cache()
results = [DetectionResult.from_dict(result) for result in results]
#print("DINO results:", results)
return results
def segment_SAM(image: Image.Image, detection_results: List[Dict[str, Any]], polygon_refinement: bool = False) -> List[DetectionResult]:
boxes = get_boxes(detection_results)
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(SAM_device)
with torch.no_grad():
outputs = segmentator(**inputs)
torch.cuda.empty_cache()
masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes,
reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
#print("Masks:", masks)
masks = refine_masks(masks, polygon_refinement)
for detection_result, mask in zip(detection_results, masks):
detection_result.mask = mask
return detection_results
def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3,
polygon_refinement: bool = False) -> Tuple[np.ndarray, List[DetectionResult]]:
if isinstance(image, str):
image = load_image(image)
detections = detect(image, labels, threshold)
segmented = segment_SAM(image, detections, polygon_refinement)
return np.array(image), segmented
def get_finalmask(image_array, detections):
for i,d in enumerate(detections):
mask_ = d.__getattribute__('mask')
if i==0:
image_with_mask = get_alphacomp_mask(mask_, image_array)
else:
image_with_mask += get_alphacomp_mask(mask_, image_array)
return image_with_mask
#Preprocessing Mask
kernel = np.ones((3, 3), np.uint8) # Taking a matrix of size 3 as the kernel
def preprocess_mask(pipe, inp_mask, expan_lvl, blur_lvl):
if expan_lvl>0:
inp_mask = Image.fromarray(cv2.dilate(np.array(inp_mask), kernel, iterations=expan_lvl))
if blur_lvl>0:
inp_mask = pipe.mask_processor.blur(inp_mask, blur_factor=blur_lvl)
# inp_mask = Image.fromarray(np.array(inp_mask))
return inp_mask
def generate_mask(inp_image, label, threshold):
image_array, segments = grounded_segmentation(image=inp_image, labels=label, threshold=threshold, polygon_refinement=True,)
inp_mask = get_finalmask(image_array, segments)
# print(type(inp_mask))
return inp_mask
#Setting up Flux (Schnell) Inpainting
transformer_ = FluxTransformer2DModel.from_pretrained("ashen0209/Flux-Dev2Pro", torch_dtype=torch.bfloat16)
text_encoder_ = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.bfloat16)
text_encoder_2_ = T5EncoderModel.from_pretrained("xlabs-ai/xflux_text_encoders", torch_dtype=torch.bfloat16)
inpaint_pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",transformer=transformer_,text_encoder=text_encoder_,text_encoder_2=text_encoder_2_, torch_dtype=torch.bfloat16).to(DEVICE)
#inpaint_pipe.load_lora_weights("XLabs-AI/flux-RealismLora")
#Uncomment the following 4 lines, if you want LoRA Realism weights added to the pipeline
# inpaint_pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
# inpaint_pipe.set_adapters(["better"], adapter_weights=[2.6])
# inpaint_pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
# inpaint_pipe.unload_lora_weights()
#torch.cuda.empty_cache()
@spaces.GPU()
def process(input_image_editor, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale, threshold, expan_lvl, blur_lvl, progress=gr.Progress(track_tqdm=True)):
if not input_text:
raise gr.Error("Please enter a text prompt.")
#Object identification
item = gemini_predict(input_text)
#print(item)
image = input_image_editor['background']
if not image:
raise gr.Error("Please upload an image.")
width, height = image.size
if width>1024 or height>1024:
image.thumbnail((1024, 1024))
if randomize_seed:
seed = random.randint(0, MAX_SEED)
#Generating Mask
label = [item]
gen_mask = generate_mask(image, label, threshold)
#Pre-processing Mask, optional
if expan_lvl>0 or blur_lvl>0:
gen_mask = preprocess_mask(inpaint_pipe, gen_mask, expan_lvl, blur_lvl)
#Inpainting
generator = torch.Generator(device=DEVICE).manual_seed(seed)
result = inpaint_pipe(prompt=input_text, image=image, mask_image=gen_mask, width=width, height=height,
strength=strength, num_inference_steps=num_inference_steps, generator=generator,
guidance_scale=guidance_scale).images[0]
return result, gen_mask, seed, item
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column(scale=1):
input_image_component = gr.ImageEditor(
label='Image',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False)
input_text_component = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,)
with gr.Accordion("Advanced Settings", open=False):
strength_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.96,
step=0.01,
label="Strength"
)
num_inference_steps = gr.Slider(
minimum=1,
maximum=100,
value=16,
step=1,
label="Number of inference steps"
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=5,
)
seed_number = gr.Number(
label="Seed",
value=26,
precision=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
with gr.Accordion("Mask Settings", open=False):
SAM_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.4,
step=0.01,
label="Threshold"
)
expansion_level = gr.Slider(
minimum=0,
maximum=10,
value=2,
step=1,
label="Mask Expansion level"
)
blur_level = gr.Slider(
minimum=0,
maximum=5,
step=1,
value=0,
label="Mask Blur level"
)
submit_button_component = gr.Button(value='Inpaint', variant='primary')
with gr.Column(scale=1):
output_image_component = gr.Image(type='pil', image_mode='RGB', label='Generated Image')
output_mask_component = gr.Image(type='pil', image_mode='RGB', label='Generated Mask')
with gr.Accordion("Debug Info", open=False):
output_seed = gr.Number(label="Used Seed")
identified_item = gr.Textbox(label="Gemini predicted item")
submit_button_component.click(
fn=process,
inputs=[input_image_component, input_text_component, strength_slider, seed_number, randomize_seed, num_inference_steps, guidance_scale, SAM_threshold, expansion_level, blur_level],
outputs=[output_image_component, output_mask_component, output_seed, identified_item]
)
demo.launch(debug=False, show_error=True)