Spaces:
Sleeping
Sleeping
File size: 4,358 Bytes
c7f34f1 cd5769d de96b0e 04eb0d0 fa7427c 365e773 96faedc 365e773 fa7427c 365e773 cd5769d 365e773 5252e41 365e773 44db7f1 7359cdc c7f34f1 7359cdc ee3ddaf de96b0e ee3ddaf 86b7527 7359cdc 86b7527 365e773 cd5769d 86b7527 365e773 cd5769d 86b7527 ee3ddaf 7359cdc ee3ddaf 365e773 7359cdc 365e773 7359cdc 365e773 13a19d5 7359cdc 86b7527 cd5769d 86b7527 365e773 86b7527 365e773 7359cdc cd5769d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import streamlit as st
from model import load_model, process_and_predict
from landmarks import normalize_landmarks, calculate_angles
from visualization import plot_hand_landmarks
import os
st.set_page_config(layout="wide")
# Define the alphabets
all_alphabets = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
excluded_alphabets = 'DMNPTUVXZ'
working_alphabets = ''.join(set(all_alphabets) - set(excluded_alphabets))
# README content
readme_content = f"""
## How it works
This ASL Recognition App uses image processing and machine learning to recognize American Sign Language (ASL) hand signs.
1. **Image Upload**: Users can upload an image of an ASL hand sign.
2. **Hand Detection**: The app uses MediaPipe to detect hand landmarks in the image.
3. **Feature Extraction**: Angles between hand landmarks are calculated and normalized.
4. **Prediction**: A Random Forest model predicts the ASL sign based on the extracted features.
5. **Visualization**: The app displays the detected hand landmarks and top predictions.
### Supported Alphabets
The app currently works for the following ASL alphabets:
{', '.join(working_alphabets)}
The app does not support or may not work correctly for:
{', '.join(excluded_alphabets)}
Note: The model's performance may vary and is subject to improvement.
The "View Hand Landmarks" tab allows users to see hand landmarks for pre-loaded ASL signs.
"""
# Load the model
model = load_model()
# Ensure the model is loaded before proceeding
if model is None:
st.stop()
# Streamlit app
st.title("ASL Recognition App")
# Display README content
st.sidebar.markdown(readme_content)
# Create tabs for different functionalities
tab1, tab2 = st.tabs(["Predict ASL Sign", "View Hand Landmarks"])
with tab1:
st.header("Predict ASL Sign")
uploaded_file = st.file_uploader("Upload an image of an ASL sign", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
try:
image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1)
if image is not None:
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Uploaded Image", use_column_width=True)
probabilities, landmarks = process_and_predict(image, model)
if probabilities is not None and landmarks is not None:
with col2:
st.subheader("Top 5 Predictions:")
top_indices = np.argsort(probabilities)[::-1][:5]
for i in top_indices:
st.write(f"{model.classes_[i]}: {probabilities[i]:.2f}")
fig = plot_hand_landmarks(landmarks, "Detected Hand Landmarks")
st.pyplot(fig)
else:
st.write("No hand detected in the image.")
else:
st.error("Failed to load the image. The file might be corrupted.")
except Exception as e:
st.error(f"An error occurred while processing the image: {str(e)}")
with tab2:
st.header("View Hand Landmarks")
selected_alphabets = st.multiselect("Select alphabets to view landmarks:", list(working_alphabets))
if selected_alphabets:
cols = st.columns(4) # 4 columns for smaller images
for idx, alphabet in enumerate(selected_alphabets):
with cols[idx % 4]:
image_path = os.path.join('asl test set', f'{alphabet.lower()}.jpeg')
if os.path.exists(image_path):
try:
image = cv2.imread(image_path)
if image is not None:
probabilities, landmarks = process_and_predict(image, model)
if landmarks is not None:
fig = plot_hand_landmarks(landmarks, f"Hand Landmarks for {alphabet}")
st.pyplot(fig)
else:
st.error(f"No hand detected for {alphabet}")
else:
st.error(f"Failed to load image for {alphabet}")
except Exception as e:
st.error(f"Error processing image for {alphabet}")
else:
st.error(f"Image not found for {alphabet}")
|