File size: 4,358 Bytes
c7f34f1
cd5769d
 
 
de96b0e
04eb0d0
fa7427c
365e773
 
 
 
 
 
 
 
 
96faedc
365e773
 
 
 
 
 
 
 
 
 
 
 
fa7427c
365e773
 
 
 
 
 
 
 
cd5769d
 
 
 
 
 
 
365e773
5252e41
 
365e773
 
44db7f1
7359cdc
 
c7f34f1
7359cdc
ee3ddaf
 
de96b0e
ee3ddaf
86b7527
7359cdc
86b7527
365e773
 
 
cd5769d
 
 
86b7527
365e773
 
 
 
 
cd5769d
86b7527
 
 
 
 
 
 
 
ee3ddaf
7359cdc
 
ee3ddaf
365e773
7359cdc
 
365e773
7359cdc
365e773
13a19d5
7359cdc
86b7527
 
 
cd5769d
86b7527
 
 
 
 
 
365e773
86b7527
365e773
7359cdc
cd5769d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import streamlit as st
from model import load_model, process_and_predict
from landmarks import normalize_landmarks, calculate_angles
from visualization import plot_hand_landmarks
import os

st.set_page_config(layout="wide")

# Define the alphabets
all_alphabets = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
excluded_alphabets = 'DMNPTUVXZ'
working_alphabets = ''.join(set(all_alphabets) - set(excluded_alphabets))

# README content
readme_content = f"""
## How it works

This ASL Recognition App uses image processing and machine learning to recognize American Sign Language (ASL) hand signs.

1. **Image Upload**: Users can upload an image of an ASL hand sign.
2. **Hand Detection**: The app uses MediaPipe to detect hand landmarks in the image.
3. **Feature Extraction**: Angles between hand landmarks are calculated and normalized.
4. **Prediction**: A Random Forest model predicts the ASL sign based on the extracted features.
5. **Visualization**: The app displays the detected hand landmarks and top predictions.

### Supported Alphabets

The app currently works for the following ASL alphabets:
{', '.join(working_alphabets)}

The app does not support or may not work correctly for:
{', '.join(excluded_alphabets)}

Note: The model's performance may vary and is subject to improvement.

The "View Hand Landmarks" tab allows users to see hand landmarks for pre-loaded ASL signs.
"""

# Load the model
model = load_model()

# Ensure the model is loaded before proceeding
if model is None:
    st.stop()

# Streamlit app
st.title("ASL Recognition App")

# Display README content
st.sidebar.markdown(readme_content)

# Create tabs for different functionalities
tab1, tab2 = st.tabs(["Predict ASL Sign", "View Hand Landmarks"])

with tab1:
    st.header("Predict ASL Sign")
    uploaded_file = st.file_uploader("Upload an image of an ASL sign", type=["jpg", "jpeg", "png"])

    if uploaded_file is not None:
        try:
            image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1)
            if image is not None:
                col1, col2 = st.columns(2)
                with col1:
                    st.image(image, caption="Uploaded Image", use_column_width=True)

                probabilities, landmarks = process_and_predict(image, model)

                if probabilities is not None and landmarks is not None:
                    with col2:
                        st.subheader("Top 5 Predictions:")
                        top_indices = np.argsort(probabilities)[::-1][:5]
                        for i in top_indices:
                            st.write(f"{model.classes_[i]}: {probabilities[i]:.2f}")

                    fig = plot_hand_landmarks(landmarks, "Detected Hand Landmarks")
                    st.pyplot(fig)
                else:
                    st.write("No hand detected in the image.")
            else:
                st.error("Failed to load the image. The file might be corrupted.")
        except Exception as e:
            st.error(f"An error occurred while processing the image: {str(e)}")

with tab2:
    st.header("View Hand Landmarks")
    
    selected_alphabets = st.multiselect("Select alphabets to view landmarks:", list(working_alphabets))

    if selected_alphabets:
        cols = st.columns(4)  # 4 columns for smaller images
        for idx, alphabet in enumerate(selected_alphabets):
            with cols[idx % 4]:
                image_path = os.path.join('asl test set', f'{alphabet.lower()}.jpeg')
                if os.path.exists(image_path):
                    try:
                        image = cv2.imread(image_path)
                        if image is not None:
                            probabilities, landmarks = process_and_predict(image, model)
                            if landmarks is not None:
                                fig = plot_hand_landmarks(landmarks, f"Hand Landmarks for {alphabet}")
                                st.pyplot(fig)
                            else:
                                st.error(f"No hand detected for {alphabet}")
                        else:
                            st.error(f"Failed to load image for {alphabet}")
                    except Exception as e:
                        st.error(f"Error processing image for {alphabet}")
                else:
                    st.error(f"Image not found for {alphabet}")