File size: 6,163 Bytes
8e2b48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

# in folder ==> gradio test_gradio.py ( it won’t provide the automatic reload mechanism?)

import gradio as gr
import numpy as np
import random
import time

# def greet(name):
#     return "Hello " + name + "!"

# demo = gr.Interface(fn=greet, inputs=gr.Textbox(lines=2, placeholder="Name Here..."), outputs="text")
    
# demo.launch()   


# def greet2(name, is_morning, temperature):
#     salutation = "Good morning" if is_morning else "Good evening"
#     greeting = f"{salutation} {name}. It is {temperature} degrees today"
#     celsius = (temperature - 32) * 5 / 9
#     return greeting, round(celsius, 2)

# demo = gr.Interface(
#     fn=greet2,
#     inputs=["text", "checkbox", gr.Slider(0, 100)],
#     outputs=["text", "number"],
# )
# demo.launch()


# def sepia(input_img):
#     sepia_filter = np.array([
#         [0.393, 0.769, 0.189], 
#         [0.349, 0.686, 0.168], 
#         [0.272, 0.534, 0.131]
#     ])
#     sepia_img = input_img.dot(sepia_filter.T)
#     sepia_img /= sepia_img.max()
#     return sepia_img

# demo = gr.Interface(sepia, gr.Image(shape=(200, 200)), "image")
# demo.launch()





def yes_man(message, history):
    if message.endswith("?"):
        return "Yes"
    else:
        return "Ask me anything!"



# gr.ChatInterface(
#     yes_man,
#     chatbot=gr.Chatbot(height=300),
#     textbox=gr.Textbox(placeholder="Ask a question about the uploaded PDF document.", container=False, scale=7),
#     title="Gradio QA Bot",
#     description=f"{intro}",
#     theme="soft",
#     examples=["What is the title of the document?", "Summarize the main ideas of the documents"],
#     cache_examples=True,
#     retry_btn=None,
#     undo_btn="Delete Previous",
#     clear_btn="Clear",
# ).launch()


# intro = "Welcome! This is not just any bot, ..."
title1 = "QA App"
title2 = "Gradio QA Bot"


def file_upload(input_file):
    # Process the uploaded file
    if input_file is not None:
        # Save the uploaded file or perform any desired operations
        file_path = "/tmp/file.pdf"
        content = input_file.read()
        try:
            with open(file_path, 'wb') as file:
                file.write(content)
            return [f"File '{input_file.name}' uploaded successfully in {file_path}.",file_path] 
        except Exception as e:
            return f"Error occurred while writing the file: {e}"
    return ["No file uploaded.", file_path] 


def crash(test, file):
    return("ok")



gr.ChatInterface(
        yes_man,
        chatbot=gr.Chatbot(height=300),
        textbox=gr.Textbox(placeholder="Ask a question about the uploaded PDF document.", container=False, scale=7),
        title="Gradio QA Bot",
        description="blabla",
        theme="soft",
        examples=["What is the title of the document?", "Summarize the main ideas of the documents"],
        cache_examples=True,
        retry_btn=None,
        undo_btn="Delete Previous",
        clear_btn="Clear",
    ).launch()


# with gr.Blocks() as demo:
#     intro = gr.Markdown("""Welcome! This is not just any bot, it's a special one equipped with state-of-the-art natural language processing capabilities, and ready to answer your queries.

#         Ready to explore? Let's get started!

#         * Step 1: Upload a PDF document.
#         * Step 2: Type in a question related to your document's content.
#         * Step 3: Get your answer!

#         Push clear cache before uploading a new doc!
#         """)
    
#     # Create a Gradio interface with a file upload input
#     iface = gr.Interface(
#         fn=file_upload,
#         inputs=gr.File(),
#         outputs=["text", gr.File()],
#         title=title1,
#         description="Drag and drop your document here")
    

#     # bot = gr.Interface(crash,
#     #             inputs=[gr.Textbox(lines=2, placeholder="Ask a question about the uploaded PDF document."), gr.File()],
#     #             outputs=[gr.Chatbot(height=300)],
#     #             title="Gradio QA Bot",
#     #             description=f"{intro}",
#     #             theme="soft",
#     #             examples=["What is the title of the document?", "Summarize the main ideas of the documents"],
#     #             cache_examples=True,
#     #             retry_btn=None,
#     #             undo_btn="Delete Previous",
#     #             clear_btn="Clear")
    
#     # gr.ChatInterface(
#     #     yes_man,
#     #     chatbot=gr.Chatbot(height=300),
#     #     textbox=gr.Textbox(placeholder="Ask a question about the uploaded PDF document.", container=False, scale=7),
#     #     title="Gradio QA Bot",
#     #     description=f"{intro}",
#     #     theme="soft",
#     #     examples=["What is the title of the document?", "Summarize the main ideas of the documents"],
#     #     cache_examples=True,
#     #     retry_btn=None,
#     #     undo_btn="Delete Previous",
#     #     clear_btn="Clear",
#     # )

# demo.launch()



# bot
iface = gr.Interface(qa_bot, 
                     inputs=["file", gr.Textbox(placeholder="Ask a question about the uploaded PDF document.", container=False, scale=7)],
                     outputs="text",
                     title=title2,
                     description="Ask a question about the uploaded PDF document.",
                     theme="soft",
                    examples=["What is the title of the document?", "Summarize the main ideas of the documents"],
                    cache_examples=True,
                    retry_btn=None,
                    undo_btn="Delete Previous",
                    clear_btn="Clear")
#### OR 

iface =  gr.ChatInterface(
            qa_bot,
            chatbot=gr.Chatbot(height=300),
            textbox=gr.Textbox(placeholder="Ask a question about the uploaded PDF document.", container=False, scale=7),
            title=title2,
            description="Ask a question about the uploaded PDF document.",
            theme="soft",
            examples=["What is the title of the document?", "Summarize the main ideas of the documents"],
            cache_examples=True,
            retry_btn=None,
            undo_btn="Delete Previous",
            clear_btn="Clear",
        )