Nefertury commited on
Commit
20d1c28
·
1 Parent(s): 5d06854

Upload 8 files

Browse files
checkpoint-16000/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: nickypro/tinyllama-15M
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ ### Framework versions
205
+
206
+
207
+ - PEFT 0.6.1
checkpoint-16000/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "nickypro/tinyllama-15M",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 64,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "down_proj",
20
+ "o_proj",
21
+ "lm_head",
22
+ "up_proj",
23
+ "gate_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "k_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-16000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d65f4025196714c4d0bdcad283d356d7780d8b3ec7b2de3aaa2b99339c49d526
3
+ size 16681976
checkpoint-16000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:169c6da3508fa7bdb7cb8e8fd7f72b9c75be531b70cc4f9bd24367d782ef4b73
3
+ size 33413946
checkpoint-16000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39dbf1d844a9992c04156e8f26097b66c86d4a136ff4e8dd95a0d61fddf67447
3
+ size 14244
checkpoint-16000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c433a611a29d5b077ab91ae6da062fd3c434ada04dfee5ef27669bde33d28e6e
3
+ size 1064
checkpoint-16000/trainer_state.json ADDED
@@ -0,0 +1,1139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.893337455557273,
5
+ "eval_steps": 200,
6
+ "global_step": 16000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.12,
13
+ "learning_rate": 0.0002981331673926571,
14
+ "loss": 2.3038,
15
+ "step": 200
16
+ },
17
+ {
18
+ "epoch": 0.12,
19
+ "eval_loss": 1.589147925376892,
20
+ "eval_runtime": 2.1684,
21
+ "eval_samples_per_second": 461.163,
22
+ "eval_steps_per_second": 57.645,
23
+ "step": 200
24
+ },
25
+ {
26
+ "epoch": 0.25,
27
+ "learning_rate": 0.00029439950217797134,
28
+ "loss": 1.5398,
29
+ "step": 400
30
+ },
31
+ {
32
+ "epoch": 0.25,
33
+ "eval_loss": 1.4633430242538452,
34
+ "eval_runtime": 2.1071,
35
+ "eval_samples_per_second": 474.58,
36
+ "eval_steps_per_second": 59.323,
37
+ "step": 400
38
+ },
39
+ {
40
+ "epoch": 0.37,
41
+ "learning_rate": 0.00029066583696328563,
42
+ "loss": 1.4615,
43
+ "step": 600
44
+ },
45
+ {
46
+ "epoch": 0.37,
47
+ "eval_loss": 1.4296711683273315,
48
+ "eval_runtime": 2.4812,
49
+ "eval_samples_per_second": 403.032,
50
+ "eval_steps_per_second": 50.379,
51
+ "step": 600
52
+ },
53
+ {
54
+ "epoch": 0.49,
55
+ "learning_rate": 0.0002869321717485998,
56
+ "loss": 1.4244,
57
+ "step": 800
58
+ },
59
+ {
60
+ "epoch": 0.49,
61
+ "eval_loss": 1.3793567419052124,
62
+ "eval_runtime": 2.9698,
63
+ "eval_samples_per_second": 336.72,
64
+ "eval_steps_per_second": 42.09,
65
+ "step": 800
66
+ },
67
+ {
68
+ "epoch": 0.62,
69
+ "learning_rate": 0.0002831985065339141,
70
+ "loss": 1.3921,
71
+ "step": 1000
72
+ },
73
+ {
74
+ "epoch": 0.62,
75
+ "eval_loss": 1.3315461874008179,
76
+ "eval_runtime": 2.7793,
77
+ "eval_samples_per_second": 359.806,
78
+ "eval_steps_per_second": 44.976,
79
+ "step": 1000
80
+ },
81
+ {
82
+ "epoch": 0.74,
83
+ "learning_rate": 0.00027946484131922836,
84
+ "loss": 1.0958,
85
+ "step": 1200
86
+ },
87
+ {
88
+ "epoch": 0.74,
89
+ "eval_loss": 0.7548955082893372,
90
+ "eval_runtime": 2.7656,
91
+ "eval_samples_per_second": 361.592,
92
+ "eval_steps_per_second": 45.199,
93
+ "step": 1200
94
+ },
95
+ {
96
+ "epoch": 0.87,
97
+ "learning_rate": 0.0002757311761045426,
98
+ "loss": 0.6312,
99
+ "step": 1400
100
+ },
101
+ {
102
+ "epoch": 0.87,
103
+ "eval_loss": 0.3990221917629242,
104
+ "eval_runtime": 2.1502,
105
+ "eval_samples_per_second": 465.071,
106
+ "eval_steps_per_second": 58.134,
107
+ "step": 1400
108
+ },
109
+ {
110
+ "epoch": 0.99,
111
+ "learning_rate": 0.00027199751088985685,
112
+ "loss": 0.4093,
113
+ "step": 1600
114
+ },
115
+ {
116
+ "epoch": 0.99,
117
+ "eval_loss": 0.26113563776016235,
118
+ "eval_runtime": 3.5103,
119
+ "eval_samples_per_second": 284.875,
120
+ "eval_steps_per_second": 35.609,
121
+ "step": 1600
122
+ },
123
+ {
124
+ "epoch": 1.11,
125
+ "learning_rate": 0.00026826384567517114,
126
+ "loss": 0.2959,
127
+ "step": 1800
128
+ },
129
+ {
130
+ "epoch": 1.11,
131
+ "eval_loss": 0.2783801257610321,
132
+ "eval_runtime": 2.8441,
133
+ "eval_samples_per_second": 351.603,
134
+ "eval_steps_per_second": 43.95,
135
+ "step": 1800
136
+ },
137
+ {
138
+ "epoch": 1.24,
139
+ "learning_rate": 0.00026453018046048533,
140
+ "loss": 0.2589,
141
+ "step": 2000
142
+ },
143
+ {
144
+ "epoch": 1.24,
145
+ "eval_loss": 0.20705343782901764,
146
+ "eval_runtime": 2.7524,
147
+ "eval_samples_per_second": 363.322,
148
+ "eval_steps_per_second": 45.415,
149
+ "step": 2000
150
+ },
151
+ {
152
+ "epoch": 1.36,
153
+ "learning_rate": 0.0002607965152457996,
154
+ "loss": 0.2246,
155
+ "step": 2200
156
+ },
157
+ {
158
+ "epoch": 1.36,
159
+ "eval_loss": 0.15551678836345673,
160
+ "eval_runtime": 2.15,
161
+ "eval_samples_per_second": 465.117,
162
+ "eval_steps_per_second": 58.14,
163
+ "step": 2200
164
+ },
165
+ {
166
+ "epoch": 1.48,
167
+ "learning_rate": 0.00025706285003111387,
168
+ "loss": 0.1991,
169
+ "step": 2400
170
+ },
171
+ {
172
+ "epoch": 1.48,
173
+ "eval_loss": 0.15825262665748596,
174
+ "eval_runtime": 2.1344,
175
+ "eval_samples_per_second": 468.515,
176
+ "eval_steps_per_second": 58.564,
177
+ "step": 2400
178
+ },
179
+ {
180
+ "epoch": 1.61,
181
+ "learning_rate": 0.0002533291848164281,
182
+ "loss": 0.1784,
183
+ "step": 2600
184
+ },
185
+ {
186
+ "epoch": 1.61,
187
+ "eval_loss": 0.12008943408727646,
188
+ "eval_runtime": 2.1414,
189
+ "eval_samples_per_second": 466.985,
190
+ "eval_steps_per_second": 58.373,
191
+ "step": 2600
192
+ },
193
+ {
194
+ "epoch": 1.73,
195
+ "learning_rate": 0.00024959551960174235,
196
+ "loss": 0.1598,
197
+ "step": 2800
198
+ },
199
+ {
200
+ "epoch": 1.73,
201
+ "eval_loss": 0.12511701881885529,
202
+ "eval_runtime": 2.55,
203
+ "eval_samples_per_second": 392.155,
204
+ "eval_steps_per_second": 49.019,
205
+ "step": 2800
206
+ },
207
+ {
208
+ "epoch": 1.86,
209
+ "learning_rate": 0.0002458618543870566,
210
+ "loss": 0.164,
211
+ "step": 3000
212
+ },
213
+ {
214
+ "epoch": 1.86,
215
+ "eval_loss": 0.11049681156873703,
216
+ "eval_runtime": 2.9765,
217
+ "eval_samples_per_second": 335.97,
218
+ "eval_steps_per_second": 41.996,
219
+ "step": 3000
220
+ },
221
+ {
222
+ "epoch": 1.98,
223
+ "learning_rate": 0.00024212818917237084,
224
+ "loss": 0.1475,
225
+ "step": 3200
226
+ },
227
+ {
228
+ "epoch": 1.98,
229
+ "eval_loss": 0.0954003781080246,
230
+ "eval_runtime": 2.8437,
231
+ "eval_samples_per_second": 351.659,
232
+ "eval_steps_per_second": 43.957,
233
+ "step": 3200
234
+ },
235
+ {
236
+ "epoch": 2.1,
237
+ "learning_rate": 0.0002383945239576851,
238
+ "loss": 0.1388,
239
+ "step": 3400
240
+ },
241
+ {
242
+ "epoch": 2.1,
243
+ "eval_loss": 0.10116879642009735,
244
+ "eval_runtime": 2.7628,
245
+ "eval_samples_per_second": 361.954,
246
+ "eval_steps_per_second": 45.244,
247
+ "step": 3400
248
+ },
249
+ {
250
+ "epoch": 2.23,
251
+ "learning_rate": 0.00023466085874299935,
252
+ "loss": 0.1346,
253
+ "step": 3600
254
+ },
255
+ {
256
+ "epoch": 2.23,
257
+ "eval_loss": 0.10693109035491943,
258
+ "eval_runtime": 3.1697,
259
+ "eval_samples_per_second": 315.491,
260
+ "eval_steps_per_second": 39.436,
261
+ "step": 3600
262
+ },
263
+ {
264
+ "epoch": 2.35,
265
+ "learning_rate": 0.00023092719352831362,
266
+ "loss": 0.1232,
267
+ "step": 3800
268
+ },
269
+ {
270
+ "epoch": 2.35,
271
+ "eval_loss": 0.09901304543018341,
272
+ "eval_runtime": 2.1178,
273
+ "eval_samples_per_second": 472.183,
274
+ "eval_steps_per_second": 59.023,
275
+ "step": 3800
276
+ },
277
+ {
278
+ "epoch": 2.47,
279
+ "learning_rate": 0.00022719352831362786,
280
+ "loss": 0.1187,
281
+ "step": 4000
282
+ },
283
+ {
284
+ "epoch": 2.47,
285
+ "eval_loss": 0.11418598890304565,
286
+ "eval_runtime": 2.1348,
287
+ "eval_samples_per_second": 468.423,
288
+ "eval_steps_per_second": 58.553,
289
+ "step": 4000
290
+ },
291
+ {
292
+ "epoch": 2.6,
293
+ "learning_rate": 0.0002234598630989421,
294
+ "loss": 0.1133,
295
+ "step": 4200
296
+ },
297
+ {
298
+ "epoch": 2.6,
299
+ "eval_loss": 0.0984039306640625,
300
+ "eval_runtime": 2.1382,
301
+ "eval_samples_per_second": 467.676,
302
+ "eval_steps_per_second": 58.459,
303
+ "step": 4200
304
+ },
305
+ {
306
+ "epoch": 2.72,
307
+ "learning_rate": 0.00021972619788425635,
308
+ "loss": 0.1088,
309
+ "step": 4400
310
+ },
311
+ {
312
+ "epoch": 2.72,
313
+ "eval_loss": 0.07466612011194229,
314
+ "eval_runtime": 2.8862,
315
+ "eval_samples_per_second": 346.477,
316
+ "eval_steps_per_second": 43.31,
317
+ "step": 4400
318
+ },
319
+ {
320
+ "epoch": 2.84,
321
+ "learning_rate": 0.00021599253266957062,
322
+ "loss": 0.1025,
323
+ "step": 4600
324
+ },
325
+ {
326
+ "epoch": 2.84,
327
+ "eval_loss": 0.1227998435497284,
328
+ "eval_runtime": 2.8738,
329
+ "eval_samples_per_second": 347.966,
330
+ "eval_steps_per_second": 43.496,
331
+ "step": 4600
332
+ },
333
+ {
334
+ "epoch": 2.97,
335
+ "learning_rate": 0.00021225886745488486,
336
+ "loss": 0.0971,
337
+ "step": 4800
338
+ },
339
+ {
340
+ "epoch": 2.97,
341
+ "eval_loss": 0.07324225455522537,
342
+ "eval_runtime": 2.2831,
343
+ "eval_samples_per_second": 437.994,
344
+ "eval_steps_per_second": 54.749,
345
+ "step": 4800
346
+ },
347
+ {
348
+ "epoch": 3.09,
349
+ "learning_rate": 0.00020852520224019913,
350
+ "loss": 0.0853,
351
+ "step": 5000
352
+ },
353
+ {
354
+ "epoch": 3.09,
355
+ "eval_loss": 0.07788190990686417,
356
+ "eval_runtime": 2.1358,
357
+ "eval_samples_per_second": 468.199,
358
+ "eval_steps_per_second": 58.525,
359
+ "step": 5000
360
+ },
361
+ {
362
+ "epoch": 3.22,
363
+ "learning_rate": 0.00020479153702551337,
364
+ "loss": 0.0865,
365
+ "step": 5200
366
+ },
367
+ {
368
+ "epoch": 3.22,
369
+ "eval_loss": 0.06575259566307068,
370
+ "eval_runtime": 2.1474,
371
+ "eval_samples_per_second": 465.679,
372
+ "eval_steps_per_second": 58.21,
373
+ "step": 5200
374
+ },
375
+ {
376
+ "epoch": 3.34,
377
+ "learning_rate": 0.0002010578718108276,
378
+ "loss": 0.0768,
379
+ "step": 5400
380
+ },
381
+ {
382
+ "epoch": 3.34,
383
+ "eval_loss": 0.08183684200048447,
384
+ "eval_runtime": 2.1211,
385
+ "eval_samples_per_second": 471.453,
386
+ "eval_steps_per_second": 58.932,
387
+ "step": 5400
388
+ },
389
+ {
390
+ "epoch": 3.46,
391
+ "learning_rate": 0.00019732420659614186,
392
+ "loss": 0.0738,
393
+ "step": 5600
394
+ },
395
+ {
396
+ "epoch": 3.46,
397
+ "eval_loss": 0.04662672430276871,
398
+ "eval_runtime": 2.7913,
399
+ "eval_samples_per_second": 358.253,
400
+ "eval_steps_per_second": 44.782,
401
+ "step": 5600
402
+ },
403
+ {
404
+ "epoch": 3.59,
405
+ "learning_rate": 0.0001935905413814561,
406
+ "loss": 0.0622,
407
+ "step": 5800
408
+ },
409
+ {
410
+ "epoch": 3.59,
411
+ "eval_loss": 0.0433196946978569,
412
+ "eval_runtime": 3.1597,
413
+ "eval_samples_per_second": 316.49,
414
+ "eval_steps_per_second": 39.561,
415
+ "step": 5800
416
+ },
417
+ {
418
+ "epoch": 3.71,
419
+ "learning_rate": 0.00018985687616677037,
420
+ "loss": 0.0671,
421
+ "step": 6000
422
+ },
423
+ {
424
+ "epoch": 3.71,
425
+ "eval_loss": 0.038382936269044876,
426
+ "eval_runtime": 2.1009,
427
+ "eval_samples_per_second": 475.976,
428
+ "eval_steps_per_second": 59.497,
429
+ "step": 6000
430
+ },
431
+ {
432
+ "epoch": 3.83,
433
+ "learning_rate": 0.0001861232109520846,
434
+ "loss": 0.0545,
435
+ "step": 6200
436
+ },
437
+ {
438
+ "epoch": 3.83,
439
+ "eval_loss": 0.04082392156124115,
440
+ "eval_runtime": 2.1346,
441
+ "eval_samples_per_second": 468.481,
442
+ "eval_steps_per_second": 58.56,
443
+ "step": 6200
444
+ },
445
+ {
446
+ "epoch": 3.96,
447
+ "learning_rate": 0.00018238954573739888,
448
+ "loss": 0.0564,
449
+ "step": 6400
450
+ },
451
+ {
452
+ "epoch": 3.96,
453
+ "eval_loss": 0.043197453022003174,
454
+ "eval_runtime": 2.1169,
455
+ "eval_samples_per_second": 472.389,
456
+ "eval_steps_per_second": 59.049,
457
+ "step": 6400
458
+ },
459
+ {
460
+ "epoch": 4.08,
461
+ "learning_rate": 0.0001786558805227131,
462
+ "loss": 0.0523,
463
+ "step": 6600
464
+ },
465
+ {
466
+ "epoch": 4.08,
467
+ "eval_loss": 0.03342806547880173,
468
+ "eval_runtime": 2.4926,
469
+ "eval_samples_per_second": 401.182,
470
+ "eval_steps_per_second": 50.148,
471
+ "step": 6600
472
+ },
473
+ {
474
+ "epoch": 4.2,
475
+ "learning_rate": 0.00017492221530802736,
476
+ "loss": 0.0456,
477
+ "step": 6800
478
+ },
479
+ {
480
+ "epoch": 4.2,
481
+ "eval_loss": 0.02744474820792675,
482
+ "eval_runtime": 3.0,
483
+ "eval_samples_per_second": 333.335,
484
+ "eval_steps_per_second": 41.667,
485
+ "step": 6800
486
+ },
487
+ {
488
+ "epoch": 4.33,
489
+ "learning_rate": 0.0001711885500933416,
490
+ "loss": 0.0442,
491
+ "step": 7000
492
+ },
493
+ {
494
+ "epoch": 4.33,
495
+ "eval_loss": 0.024560416117310524,
496
+ "eval_runtime": 2.6752,
497
+ "eval_samples_per_second": 373.806,
498
+ "eval_steps_per_second": 46.726,
499
+ "step": 7000
500
+ },
501
+ {
502
+ "epoch": 4.45,
503
+ "learning_rate": 0.00016745488487865588,
504
+ "loss": 0.0383,
505
+ "step": 7200
506
+ },
507
+ {
508
+ "epoch": 4.45,
509
+ "eval_loss": 0.018605533987283707,
510
+ "eval_runtime": 2.1117,
511
+ "eval_samples_per_second": 473.559,
512
+ "eval_steps_per_second": 59.195,
513
+ "step": 7200
514
+ },
515
+ {
516
+ "epoch": 4.58,
517
+ "learning_rate": 0.00016372121966397012,
518
+ "loss": 0.0348,
519
+ "step": 7400
520
+ },
521
+ {
522
+ "epoch": 4.58,
523
+ "eval_loss": 0.01473915483802557,
524
+ "eval_runtime": 2.1223,
525
+ "eval_samples_per_second": 471.193,
526
+ "eval_steps_per_second": 58.899,
527
+ "step": 7400
528
+ },
529
+ {
530
+ "epoch": 4.7,
531
+ "learning_rate": 0.0001599875544492844,
532
+ "loss": 0.0299,
533
+ "step": 7600
534
+ },
535
+ {
536
+ "epoch": 4.7,
537
+ "eval_loss": 0.025838036090135574,
538
+ "eval_runtime": 2.1138,
539
+ "eval_samples_per_second": 473.088,
540
+ "eval_steps_per_second": 59.136,
541
+ "step": 7600
542
+ },
543
+ {
544
+ "epoch": 4.82,
545
+ "learning_rate": 0.0001562538892345986,
546
+ "loss": 0.0268,
547
+ "step": 7800
548
+ },
549
+ {
550
+ "epoch": 4.82,
551
+ "eval_loss": 0.01688736118376255,
552
+ "eval_runtime": 2.1658,
553
+ "eval_samples_per_second": 461.718,
554
+ "eval_steps_per_second": 57.715,
555
+ "step": 7800
556
+ },
557
+ {
558
+ "epoch": 4.95,
559
+ "learning_rate": 0.00015252022401991287,
560
+ "loss": 0.0272,
561
+ "step": 8000
562
+ },
563
+ {
564
+ "epoch": 4.95,
565
+ "eval_loss": 0.020514091476798058,
566
+ "eval_runtime": 2.1415,
567
+ "eval_samples_per_second": 466.966,
568
+ "eval_steps_per_second": 58.371,
569
+ "step": 8000
570
+ },
571
+ {
572
+ "epoch": 5.07,
573
+ "learning_rate": 0.00014878655880522712,
574
+ "loss": 0.0277,
575
+ "step": 8200
576
+ },
577
+ {
578
+ "epoch": 5.07,
579
+ "eval_loss": 0.018993763253092766,
580
+ "eval_runtime": 2.3074,
581
+ "eval_samples_per_second": 433.383,
582
+ "eval_steps_per_second": 54.173,
583
+ "step": 8200
584
+ },
585
+ {
586
+ "epoch": 5.19,
587
+ "learning_rate": 0.00014505289359054139,
588
+ "loss": 0.0253,
589
+ "step": 8400
590
+ },
591
+ {
592
+ "epoch": 5.19,
593
+ "eval_loss": 0.0132982786744833,
594
+ "eval_runtime": 2.7723,
595
+ "eval_samples_per_second": 360.706,
596
+ "eval_steps_per_second": 45.088,
597
+ "step": 8400
598
+ },
599
+ {
600
+ "epoch": 5.32,
601
+ "learning_rate": 0.00014131922837585563,
602
+ "loss": 0.0208,
603
+ "step": 8600
604
+ },
605
+ {
606
+ "epoch": 5.32,
607
+ "eval_loss": 0.011603164486587048,
608
+ "eval_runtime": 2.2147,
609
+ "eval_samples_per_second": 451.518,
610
+ "eval_steps_per_second": 56.44,
611
+ "step": 8600
612
+ },
613
+ {
614
+ "epoch": 5.44,
615
+ "learning_rate": 0.00013758556316116987,
616
+ "loss": 0.019,
617
+ "step": 8800
618
+ },
619
+ {
620
+ "epoch": 5.44,
621
+ "eval_loss": 0.007933158427476883,
622
+ "eval_runtime": 2.565,
623
+ "eval_samples_per_second": 389.858,
624
+ "eval_steps_per_second": 48.732,
625
+ "step": 8800
626
+ },
627
+ {
628
+ "epoch": 5.57,
629
+ "learning_rate": 0.00013385189794648414,
630
+ "loss": 0.0179,
631
+ "step": 9000
632
+ },
633
+ {
634
+ "epoch": 5.57,
635
+ "eval_loss": 0.00808796752244234,
636
+ "eval_runtime": 2.157,
637
+ "eval_samples_per_second": 463.605,
638
+ "eval_steps_per_second": 57.951,
639
+ "step": 9000
640
+ },
641
+ {
642
+ "epoch": 5.69,
643
+ "learning_rate": 0.00013011823273179835,
644
+ "loss": 0.0136,
645
+ "step": 9200
646
+ },
647
+ {
648
+ "epoch": 5.69,
649
+ "eval_loss": 0.02137412503361702,
650
+ "eval_runtime": 2.1642,
651
+ "eval_samples_per_second": 462.06,
652
+ "eval_steps_per_second": 57.758,
653
+ "step": 9200
654
+ },
655
+ {
656
+ "epoch": 5.81,
657
+ "learning_rate": 0.00012638456751711262,
658
+ "loss": 0.0196,
659
+ "step": 9400
660
+ },
661
+ {
662
+ "epoch": 5.81,
663
+ "eval_loss": 0.009271830320358276,
664
+ "eval_runtime": 2.7483,
665
+ "eval_samples_per_second": 363.865,
666
+ "eval_steps_per_second": 45.483,
667
+ "step": 9400
668
+ },
669
+ {
670
+ "epoch": 5.94,
671
+ "learning_rate": 0.00012265090230242687,
672
+ "loss": 0.015,
673
+ "step": 9600
674
+ },
675
+ {
676
+ "epoch": 5.94,
677
+ "eval_loss": 0.011388062499463558,
678
+ "eval_runtime": 3.1063,
679
+ "eval_samples_per_second": 321.931,
680
+ "eval_steps_per_second": 40.241,
681
+ "step": 9600
682
+ },
683
+ {
684
+ "epoch": 6.06,
685
+ "learning_rate": 0.00011891723708774112,
686
+ "loss": 0.0196,
687
+ "step": 9800
688
+ },
689
+ {
690
+ "epoch": 6.06,
691
+ "eval_loss": 0.009324445389211178,
692
+ "eval_runtime": 2.9695,
693
+ "eval_samples_per_second": 336.759,
694
+ "eval_steps_per_second": 42.095,
695
+ "step": 9800
696
+ },
697
+ {
698
+ "epoch": 6.18,
699
+ "learning_rate": 0.00011518357187305538,
700
+ "loss": 0.0192,
701
+ "step": 10000
702
+ },
703
+ {
704
+ "epoch": 6.18,
705
+ "eval_loss": 0.008494062349200249,
706
+ "eval_runtime": 2.1785,
707
+ "eval_samples_per_second": 459.035,
708
+ "eval_steps_per_second": 57.379,
709
+ "step": 10000
710
+ },
711
+ {
712
+ "epoch": 6.31,
713
+ "learning_rate": 0.00011144990665836963,
714
+ "loss": 0.0155,
715
+ "step": 10200
716
+ },
717
+ {
718
+ "epoch": 6.31,
719
+ "eval_loss": 0.005131287965923548,
720
+ "eval_runtime": 2.2151,
721
+ "eval_samples_per_second": 451.441,
722
+ "eval_steps_per_second": 56.43,
723
+ "step": 10200
724
+ },
725
+ {
726
+ "epoch": 6.43,
727
+ "learning_rate": 0.00010771624144368388,
728
+ "loss": 0.0182,
729
+ "step": 10400
730
+ },
731
+ {
732
+ "epoch": 6.43,
733
+ "eval_loss": 0.01033452432602644,
734
+ "eval_runtime": 2.204,
735
+ "eval_samples_per_second": 453.729,
736
+ "eval_steps_per_second": 56.716,
737
+ "step": 10400
738
+ },
739
+ {
740
+ "epoch": 6.55,
741
+ "learning_rate": 0.00010398257622899813,
742
+ "loss": 0.0149,
743
+ "step": 10600
744
+ },
745
+ {
746
+ "epoch": 6.55,
747
+ "eval_loss": 0.006081216037273407,
748
+ "eval_runtime": 2.6138,
749
+ "eval_samples_per_second": 382.582,
750
+ "eval_steps_per_second": 47.823,
751
+ "step": 10600
752
+ },
753
+ {
754
+ "epoch": 6.68,
755
+ "learning_rate": 0.00010024891101431236,
756
+ "loss": 0.0155,
757
+ "step": 10800
758
+ },
759
+ {
760
+ "epoch": 6.68,
761
+ "eval_loss": 0.008235114626586437,
762
+ "eval_runtime": 2.9799,
763
+ "eval_samples_per_second": 335.587,
764
+ "eval_steps_per_second": 41.948,
765
+ "step": 10800
766
+ },
767
+ {
768
+ "epoch": 6.8,
769
+ "learning_rate": 9.651524579962662e-05,
770
+ "loss": 0.0125,
771
+ "step": 11000
772
+ },
773
+ {
774
+ "epoch": 6.8,
775
+ "eval_loss": 0.0061024767346680164,
776
+ "eval_runtime": 3.1763,
777
+ "eval_samples_per_second": 314.832,
778
+ "eval_steps_per_second": 39.354,
779
+ "step": 11000
780
+ },
781
+ {
782
+ "epoch": 6.93,
783
+ "learning_rate": 9.278158058494087e-05,
784
+ "loss": 0.0126,
785
+ "step": 11200
786
+ },
787
+ {
788
+ "epoch": 6.93,
789
+ "eval_loss": 0.0077368393540382385,
790
+ "eval_runtime": 2.1677,
791
+ "eval_samples_per_second": 461.31,
792
+ "eval_steps_per_second": 57.664,
793
+ "step": 11200
794
+ },
795
+ {
796
+ "epoch": 7.05,
797
+ "learning_rate": 8.904791537025512e-05,
798
+ "loss": 0.016,
799
+ "step": 11400
800
+ },
801
+ {
802
+ "epoch": 7.05,
803
+ "eval_loss": 0.01462015975266695,
804
+ "eval_runtime": 2.163,
805
+ "eval_samples_per_second": 462.313,
806
+ "eval_steps_per_second": 57.789,
807
+ "step": 11400
808
+ },
809
+ {
810
+ "epoch": 7.17,
811
+ "learning_rate": 8.531425015556937e-05,
812
+ "loss": 0.0168,
813
+ "step": 11600
814
+ },
815
+ {
816
+ "epoch": 7.17,
817
+ "eval_loss": 0.013114248402416706,
818
+ "eval_runtime": 2.177,
819
+ "eval_samples_per_second": 459.355,
820
+ "eval_steps_per_second": 57.419,
821
+ "step": 11600
822
+ },
823
+ {
824
+ "epoch": 7.3,
825
+ "learning_rate": 8.158058494088363e-05,
826
+ "loss": 0.0115,
827
+ "step": 11800
828
+ },
829
+ {
830
+ "epoch": 7.3,
831
+ "eval_loss": 0.0058467877097427845,
832
+ "eval_runtime": 2.8432,
833
+ "eval_samples_per_second": 351.72,
834
+ "eval_steps_per_second": 43.965,
835
+ "step": 11800
836
+ },
837
+ {
838
+ "epoch": 7.42,
839
+ "learning_rate": 7.784691972619787e-05,
840
+ "loss": 0.0109,
841
+ "step": 12000
842
+ },
843
+ {
844
+ "epoch": 7.42,
845
+ "eval_loss": 0.007328983396291733,
846
+ "eval_runtime": 2.9781,
847
+ "eval_samples_per_second": 335.785,
848
+ "eval_steps_per_second": 41.973,
849
+ "step": 12000
850
+ },
851
+ {
852
+ "epoch": 7.54,
853
+ "learning_rate": 7.411325451151213e-05,
854
+ "loss": 0.01,
855
+ "step": 12200
856
+ },
857
+ {
858
+ "epoch": 7.54,
859
+ "eval_loss": 0.00543447770178318,
860
+ "eval_runtime": 2.13,
861
+ "eval_samples_per_second": 469.492,
862
+ "eval_steps_per_second": 58.686,
863
+ "step": 12200
864
+ },
865
+ {
866
+ "epoch": 7.67,
867
+ "learning_rate": 7.037958929682637e-05,
868
+ "loss": 0.0085,
869
+ "step": 12400
870
+ },
871
+ {
872
+ "epoch": 7.67,
873
+ "eval_loss": 0.005294375587254763,
874
+ "eval_runtime": 2.1484,
875
+ "eval_samples_per_second": 465.459,
876
+ "eval_steps_per_second": 58.182,
877
+ "step": 12400
878
+ },
879
+ {
880
+ "epoch": 7.79,
881
+ "learning_rate": 6.664592408214062e-05,
882
+ "loss": 0.0105,
883
+ "step": 12600
884
+ },
885
+ {
886
+ "epoch": 7.79,
887
+ "eval_loss": 0.0051603252068161964,
888
+ "eval_runtime": 2.1621,
889
+ "eval_samples_per_second": 462.523,
890
+ "eval_steps_per_second": 57.815,
891
+ "step": 12600
892
+ },
893
+ {
894
+ "epoch": 7.91,
895
+ "learning_rate": 6.291225886745488e-05,
896
+ "loss": 0.01,
897
+ "step": 12800
898
+ },
899
+ {
900
+ "epoch": 7.91,
901
+ "eval_loss": 0.005722519941627979,
902
+ "eval_runtime": 2.7684,
903
+ "eval_samples_per_second": 361.216,
904
+ "eval_steps_per_second": 45.152,
905
+ "step": 12800
906
+ },
907
+ {
908
+ "epoch": 8.04,
909
+ "learning_rate": 5.917859365276913e-05,
910
+ "loss": 0.0071,
911
+ "step": 13000
912
+ },
913
+ {
914
+ "epoch": 8.04,
915
+ "eval_loss": 0.004564732778817415,
916
+ "eval_runtime": 2.7551,
917
+ "eval_samples_per_second": 362.961,
918
+ "eval_steps_per_second": 45.37,
919
+ "step": 13000
920
+ },
921
+ {
922
+ "epoch": 8.16,
923
+ "learning_rate": 5.5444928438083385e-05,
924
+ "loss": 0.0065,
925
+ "step": 13200
926
+ },
927
+ {
928
+ "epoch": 8.16,
929
+ "eval_loss": 0.004461783915758133,
930
+ "eval_runtime": 3.1705,
931
+ "eval_samples_per_second": 315.412,
932
+ "eval_steps_per_second": 39.426,
933
+ "step": 13200
934
+ },
935
+ {
936
+ "epoch": 8.29,
937
+ "learning_rate": 5.171126322339763e-05,
938
+ "loss": 0.0075,
939
+ "step": 13400
940
+ },
941
+ {
942
+ "epoch": 8.29,
943
+ "eval_loss": 0.004132562782615423,
944
+ "eval_runtime": 3.5027,
945
+ "eval_samples_per_second": 285.498,
946
+ "eval_steps_per_second": 35.687,
947
+ "step": 13400
948
+ },
949
+ {
950
+ "epoch": 8.41,
951
+ "learning_rate": 4.797759800871188e-05,
952
+ "loss": 0.0072,
953
+ "step": 13600
954
+ },
955
+ {
956
+ "epoch": 8.41,
957
+ "eval_loss": 0.004298557061702013,
958
+ "eval_runtime": 2.1516,
959
+ "eval_samples_per_second": 464.775,
960
+ "eval_steps_per_second": 58.097,
961
+ "step": 13600
962
+ },
963
+ {
964
+ "epoch": 8.53,
965
+ "learning_rate": 4.424393279402613e-05,
966
+ "loss": 0.0077,
967
+ "step": 13800
968
+ },
969
+ {
970
+ "epoch": 8.53,
971
+ "eval_loss": 0.005747557617723942,
972
+ "eval_runtime": 2.1174,
973
+ "eval_samples_per_second": 472.272,
974
+ "eval_steps_per_second": 59.034,
975
+ "step": 13800
976
+ },
977
+ {
978
+ "epoch": 8.66,
979
+ "learning_rate": 4.051026757934038e-05,
980
+ "loss": 0.009,
981
+ "step": 14000
982
+ },
983
+ {
984
+ "epoch": 8.66,
985
+ "eval_loss": 0.005076244939118624,
986
+ "eval_runtime": 2.1715,
987
+ "eval_samples_per_second": 460.514,
988
+ "eval_steps_per_second": 57.564,
989
+ "step": 14000
990
+ },
991
+ {
992
+ "epoch": 8.78,
993
+ "learning_rate": 3.677660236465463e-05,
994
+ "loss": 0.0066,
995
+ "step": 14200
996
+ },
997
+ {
998
+ "epoch": 8.78,
999
+ "eval_loss": 0.004328867886215448,
1000
+ "eval_runtime": 2.1457,
1001
+ "eval_samples_per_second": 466.038,
1002
+ "eval_steps_per_second": 58.255,
1003
+ "step": 14200
1004
+ },
1005
+ {
1006
+ "epoch": 8.9,
1007
+ "learning_rate": 3.304293714996888e-05,
1008
+ "loss": 0.0065,
1009
+ "step": 14400
1010
+ },
1011
+ {
1012
+ "epoch": 8.9,
1013
+ "eval_loss": 0.004579309374094009,
1014
+ "eval_runtime": 2.5023,
1015
+ "eval_samples_per_second": 399.626,
1016
+ "eval_steps_per_second": 49.953,
1017
+ "step": 14400
1018
+ },
1019
+ {
1020
+ "epoch": 9.03,
1021
+ "learning_rate": 2.9309271935283136e-05,
1022
+ "loss": 0.0047,
1023
+ "step": 14600
1024
+ },
1025
+ {
1026
+ "epoch": 9.03,
1027
+ "eval_loss": 0.00406376738101244,
1028
+ "eval_runtime": 3.0193,
1029
+ "eval_samples_per_second": 331.204,
1030
+ "eval_steps_per_second": 41.401,
1031
+ "step": 14600
1032
+ },
1033
+ {
1034
+ "epoch": 9.15,
1035
+ "learning_rate": 2.5575606720597382e-05,
1036
+ "loss": 0.0049,
1037
+ "step": 14800
1038
+ },
1039
+ {
1040
+ "epoch": 9.15,
1041
+ "eval_loss": 0.0037133253645151854,
1042
+ "eval_runtime": 2.5419,
1043
+ "eval_samples_per_second": 393.406,
1044
+ "eval_steps_per_second": 49.176,
1045
+ "step": 14800
1046
+ },
1047
+ {
1048
+ "epoch": 9.28,
1049
+ "learning_rate": 2.1841941505911635e-05,
1050
+ "loss": 0.0048,
1051
+ "step": 15000
1052
+ },
1053
+ {
1054
+ "epoch": 9.28,
1055
+ "eval_loss": 0.0035180081613361835,
1056
+ "eval_runtime": 2.1535,
1057
+ "eval_samples_per_second": 464.362,
1058
+ "eval_steps_per_second": 58.045,
1059
+ "step": 15000
1060
+ },
1061
+ {
1062
+ "epoch": 9.4,
1063
+ "learning_rate": 1.8108276291225884e-05,
1064
+ "loss": 0.0045,
1065
+ "step": 15200
1066
+ },
1067
+ {
1068
+ "epoch": 9.4,
1069
+ "eval_loss": 0.0041992985643446445,
1070
+ "eval_runtime": 2.1652,
1071
+ "eval_samples_per_second": 461.858,
1072
+ "eval_steps_per_second": 57.732,
1073
+ "step": 15200
1074
+ },
1075
+ {
1076
+ "epoch": 9.52,
1077
+ "learning_rate": 1.4374611076540135e-05,
1078
+ "loss": 0.0041,
1079
+ "step": 15400
1080
+ },
1081
+ {
1082
+ "epoch": 9.52,
1083
+ "eval_loss": 0.003915323410183191,
1084
+ "eval_runtime": 2.7057,
1085
+ "eval_samples_per_second": 369.59,
1086
+ "eval_steps_per_second": 46.199,
1087
+ "step": 15400
1088
+ },
1089
+ {
1090
+ "epoch": 9.65,
1091
+ "learning_rate": 1.0640945861854385e-05,
1092
+ "loss": 0.0042,
1093
+ "step": 15600
1094
+ },
1095
+ {
1096
+ "epoch": 9.65,
1097
+ "eval_loss": 0.0032798268366605043,
1098
+ "eval_runtime": 3.0263,
1099
+ "eval_samples_per_second": 330.438,
1100
+ "eval_steps_per_second": 41.305,
1101
+ "step": 15600
1102
+ },
1103
+ {
1104
+ "epoch": 9.77,
1105
+ "learning_rate": 6.907280647168636e-06,
1106
+ "loss": 0.0041,
1107
+ "step": 15800
1108
+ },
1109
+ {
1110
+ "epoch": 9.77,
1111
+ "eval_loss": 0.003197046695277095,
1112
+ "eval_runtime": 2.2279,
1113
+ "eval_samples_per_second": 448.855,
1114
+ "eval_steps_per_second": 56.107,
1115
+ "step": 15800
1116
+ },
1117
+ {
1118
+ "epoch": 9.89,
1119
+ "learning_rate": 3.173615432482887e-06,
1120
+ "loss": 0.0039,
1121
+ "step": 16000
1122
+ },
1123
+ {
1124
+ "epoch": 9.89,
1125
+ "eval_loss": 0.003054018598049879,
1126
+ "eval_runtime": 2.2116,
1127
+ "eval_samples_per_second": 452.155,
1128
+ "eval_steps_per_second": 56.519,
1129
+ "step": 16000
1130
+ }
1131
+ ],
1132
+ "logging_steps": 200,
1133
+ "max_steps": 16170,
1134
+ "num_train_epochs": 10,
1135
+ "save_steps": 200,
1136
+ "total_flos": 6146864391499776.0,
1137
+ "trial_name": null,
1138
+ "trial_params": null
1139
+ }
checkpoint-16000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:151f7c03b13beb37d6cb3eb5afcbb06b6c8d33160a6f55a4964868b2d7d024bb
3
+ size 4600