DiabetesPilot / appmain.py
Namitg02's picture
Rename app.py to appmain.py
0757840 verified
raw
history blame
6.53 kB
from datasets import load_dataset
from datasets import Dataset
from langchain.docstore.document import Document as LangchainDocument
from sentence_transformers import SentenceTransformer
import faiss
import time
import torch
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
from transformers import TextIteratorStreamer
from threading import Thread
#from huggingface_hub import InferenceClient
from huggingface_hub import Repository, upload_file
import os
HF_TOKEN = os.getenv('HF_Token')
llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
tokenizer = AutoTokenizer.from_pretrained(llm_model)
# pulling tokeinzer for text generation model
data = load_dataset("Namitg02/ADASOF24", split='train', streaming=False)
#Returns a list of dictionaries, each representing a row in the dataset.
length = len(data)
#print(data[2])
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
embedding_dim = embedding_model.get_sentence_embedding_dimension()
# Returns dimensions of embedidng
index = faiss.IndexFlatL2(embedding_dim)
data.add_faiss_index("embeddings", custom_index=index)
# adds an index column for the embeddings
print("check1d")
#question = "How can I reverse Diabetes?"
SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""
# Provides context of how to answer the question
print("check2")
model = AutoModelForCausalLM.from_pretrained(llm_model)
# Initializing the text generation model
terminators = [
tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
tokenizer.convert_tokens_to_ids("<|eot_id|>") # Converts a token strings in a single/ sequence of integer id using the vocabulary
]
# indicates the end of a sequence
def search(query: str, k: int = 3 ):
"""a function that embeds a new query and returns the most probable results"""
embedded_query = embedding_model.encode(query) # create embedding of a new query
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
k=k # get only top k results
)
return scores, retrieved_examples
# returns scores (List[float]): the retrieval scores from either FAISS (IndexFlatL2 by default) and examples (dict) format
# called by talk function that passes prompt
#print(scores, retrieved_examples)
print("check2A")
def format_prompt(prompt,retrieved_documents,k):
"""using the retrieved documents we will prompt the model to generate our responses"""
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k) :
PROMPT+= f"{retrieved_documents['0'][idx]}\n"
return PROMPT
# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived
print("check3")
#print(PROMPT)
print("check3A")
def talk(prompt,history):
k = 3 # number of retrieved documents
scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
print(retrieved_documents.keys())
formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents
formatted_prompt = formatted_prompt[:400] # to avoid memory issue
# print(retrieved_documents['0'][1]
# print(retrieved_documents['0'][2]
print(retrieved_documents['0'])
print(formatted_prompt)
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}] # binding the system context and new prompt for LLM
# the chat template structure should be based on text generation model format
print("check3B")
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# tell the model to generate
# add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response
print("check3C")
outputs = model.generate(
input_ids,
max_new_tokens=300,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
# calling the model to generate response based on message/ input
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
# temperature controls randomness. more renadomness with higher temperature
# only the tokens comprising the top_p probability mass are considered for responses
# This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
print("check3D")
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
# stores print-ready text in a queue, to be used by a downstream application as an iterator. removes specail tokens in generated text.
# timeout for text queue. tokenizer for decoding tokens
# called by generate_kwargs
print("check3E")
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens= 512,
do_sample=True,
top_p=0.95,
temperature=0.75,
eos_token_id=terminators,
)
# send additional parameters to model for generation
print("check3F")
t = Thread(target=model.generate, kwargs=generate_kwargs)
# to process multiple instances
t.start()
# start a thread
print("check3G")
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
print("check3H")
TITLE = "AI Copilot for Diabetes Patients"
DESCRIPTION = ""
import gradio as gr
# Design chatbot
demo = gr.ChatInterface(
fn=talk,
chatbot=gr.Chatbot(
show_label=True,
show_share_button=True,
show_copy_button=True,
likeable=True,
layout="bubble",
bubble_full_width=False,
),
theme="Soft",
examples=[["what is Diabetes? "]],
title=TITLE,
description=DESCRIPTION,
)
# launch chatbot and calls the talk function which in turn calls other functions
print("check3I")
demo.launch()