File size: 95,993 Bytes
893a1df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
# # coding=utf-8
# # Copyright 2023 Authors of "A Watermark for Large Language Models"
# # available at https://arxiv.org/abs/2301.10226
# #
# # Licensed under the Apache License, Version 2.0 (the "License");
# # you may not use this file except in compliance with the License.
# # You may obtain a copy of the License at
# #
# #     http://www.apache.org/licenses/LICENSE-2.0
# #
# # Unless required by applicable law or agreed to in writing, software
# # distributed under the License is distributed on an "AS IS" BASIS,
# # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# # See the License for the specific language governing permissions and
# # limitations under the License.
# from __future__ import annotations
# import os
# import argparse
# from argparse import Namespace
# from pprint import pprint
# from functools import partial
#
# import numpy # for gradio hot reload
# import gradio as gr
#
# import torch
#
# from transformers import (AutoTokenizer,
#                           AutoModelForSeq2SeqLM,
#                           AutoModelForCausalLM,
#                           LogitsProcessorList)
#
# from watermark_processor import WatermarkLogitsProcessor, WatermarkDetector
#
# from typing import Iterable
# from gradio.themes.base import Base
# from gradio.themes.utils import colors, fonts, sizes
# import time
#
# def str2bool(v):
#     """Util function for user friendly boolean flag args"""
#     if isinstance(v, bool):
#         return v
#     if v.lower() in ('yes', 'true', 't', 'y', '1'):
#         return True
#     elif v.lower() in ('no', 'false', 'f', 'n', '0'):
#         return False
#     else:
#         raise argparse.ArgumentTypeError('Boolean value expected.')
#
# def parse_args():
#     """Command line argument specification"""
#
#     parser = argparse.ArgumentParser(description="A minimum working example of applying the watermark to any LLM that supports the huggingface 🤗 `generate` API")
#
#     parser.add_argument(
#         "--run_gradio",
#         type=str2bool,
#         default=True,
#         help="Whether to launch as a gradio demo. Set to False if not installed and want to just run the stdout version.",
#     )
#     parser.add_argument(
#         "--demo_public",
#         type=str2bool,
#         default=False,
#         help="Whether to expose the gradio demo to the internet.",
#     )
#     parser.add_argument(
#         "--model_name_or_path",
#         type=str,
#         default="facebook/opt-6.7b",
#         help="Main model, path to pretrained model or model identifier from huggingface.co/models.",
#     )
#     parser.add_argument(
#         "--prompt_max_length",
#         type=int,
#         default=None,
#         help="Truncation length for prompt, overrides model config's max length field.",
#     )
#     parser.add_argument(
#         "--max_new_tokens",
#         type=int,
#         default=200,
#         help="Maximmum number of new tokens to generate.",
#     )
#     parser.add_argument(
#         "--generation_seed",
#         type=int,
#         default=123,
#         help="Seed for setting the torch global rng prior to generation.",
#     )
#     parser.add_argument(
#         "--use_sampling",
#         type=str2bool,
#         default=True,
#         help="Whether to generate using multinomial sampling.",
#     )
#     parser.add_argument(
#         "--sampling_temp",
#         type=float,
#         default=0.7,
#         help="Sampling temperature to use when generating using multinomial sampling.",
#     )
#     parser.add_argument(
#         "--n_beams",
#         type=int,
#         default=1,
#         help="Number of beams to use for beam search. 1 is normal greedy decoding",
#     )
#     parser.add_argument(
#         "--use_gpu",
#         type=str2bool,
#         default=True,
#         help="Whether to run inference and watermark hashing/seeding/permutation on gpu.",
#     )
#     parser.add_argument(
#         "--seeding_scheme",
#         type=str,
#         default="simple_1",
#         help="Seeding scheme to use to generate the greenlists at each generation and verification step.",
#     )
#     parser.add_argument(
#         "--gamma",
#         type=float,
#         default=0.25,
#         help="The fraction of the vocabulary to partition into the greenlist at each generation and verification step.",
#     )
#     parser.add_argument(
#         "--delta",
#         type=float,
#         default=2.0,
#         help="The amount/bias to add to each of the greenlist token logits before each token sampling step.",
#     )
#     parser.add_argument(
#         "--normalizers",
#         type=str,
#         default="",
#         help="Single or comma separated list of the preprocessors/normalizer names to use when performing watermark detection.",
#     )
#     parser.add_argument(
#         "--ignore_repeated_bigrams",
#         type=str2bool,
#         default=False,
#         help="Whether to use the detection method that only counts each unqiue bigram once as either a green or red hit.",
#     )
#     parser.add_argument(
#         "--detection_z_threshold",
#         type=float,
#         default=4.0,
#         help="The test statistic threshold for the detection hypothesis test.",
#     )
#     parser.add_argument(
#         "--select_green_tokens",
#         type=str2bool,
#         default=True,
#         help="How to treat the permuation when selecting the greenlist tokens at each step. Legacy is (False) to pick the complement/reds first.",
#     )
#     parser.add_argument(
#         "--skip_model_load",
#         type=str2bool,
#         default=False,
#         help="Skip the model loading to debug the interface.",
#     )
#     parser.add_argument(
#         "--seed_separately",
#         type=str2bool,
#         default=True,
#         help="Whether to call the torch seed function before both the unwatermarked and watermarked generate calls.",
#     )
#     parser.add_argument(
#         "--load_fp16",
#         type=str2bool,
#         default=False,
#         help="Whether to run model in float16 precsion.",
#     )
#     args = parser.parse_args()
#     return args
#
# def load_model(args):
#     """Load and return the model and tokenizer"""
#
#     args.is_seq2seq_model = any([(model_type in args.model_name_or_path) for model_type in ["t5","T0"]])
#     args.is_decoder_only_model = any([(model_type in args.model_name_or_path) for model_type in ["gpt","opt","bloom"]])
#     if args.is_seq2seq_model:
#         model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path)
#     elif args.is_decoder_only_model:
#         if args.load_fp16:
#             model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,torch_dtype=torch.float16, device_map='auto')
#         else:
#             model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path)
#     else:
#         raise ValueError(f"Unknown model type: {args.model_name_or_path}")
#
#     if args.use_gpu:
#         device = "cuda" if torch.cuda.is_available() else "cpu"
#         if args.load_fp16:
#             pass
#         else:
#             model = model.to(device)
#     else:
#         device = "cpu"
#     model.eval()
#
#     tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
#
#     return model, tokenizer, device
#
# def generate(prompt, args, model=None, device=None, tokenizer=None):
#     """Instatiate the WatermarkLogitsProcessor according to the watermark parameters
#        and generate watermarked text by passing it to the generate method of the model
#        as a logits processor. """
#
#     print(f"Generating with {args}")
#
#     watermark_processor = WatermarkLogitsProcessor(vocab=list(tokenizer.get_vocab().values()),
#                                                     gamma=args.gamma,
#                                                     delta=args.delta,
#                                                     seeding_scheme=args.seeding_scheme,
#                                                     select_green_tokens=args.select_green_tokens)
#
#     gen_kwargs = dict(max_new_tokens=args.max_new_tokens)
#
#     if args.use_sampling:
#         gen_kwargs.update(dict(
#             do_sample=True,
#             top_k=0,
#             temperature=args.sampling_temp
#         ))
#     else:
#         gen_kwargs.update(dict(
#             num_beams=args.n_beams
#         ))
#
#     generate_without_watermark = partial(
#         model.generate,
#         **gen_kwargs
#     )
#     generate_with_watermark = partial(
#         model.generate,
#         logits_processor=LogitsProcessorList([watermark_processor]),
#         **gen_kwargs
#     )
#     if args.prompt_max_length:
#         pass
#     elif hasattr(model.config,"max_position_embedding"):
#         args.prompt_max_length = model.config.max_position_embeddings-args.max_new_tokens
#     else:
#         args.prompt_max_length = 2048-args.max_new_tokens
#
#     tokd_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True, truncation=True, max_length=args.prompt_max_length).to(device)
#     truncation_warning = True if tokd_input["input_ids"].shape[-1] == args.prompt_max_length else False
#     redecoded_input = tokenizer.batch_decode(tokd_input["input_ids"], skip_special_tokens=True)[0]
#
#     torch.manual_seed(args.generation_seed)
#     output_without_watermark = generate_without_watermark(**tokd_input)
#
#     # optional to seed before second generation, but will not be the same again generally, unless delta==0.0, no-op watermark
#     if args.seed_separately:
#         torch.manual_seed(args.generation_seed)
#     output_with_watermark = generate_with_watermark(**tokd_input)
#
#     if args.is_decoder_only_model:
#         # need to isolate the newly generated tokens
#         output_without_watermark = output_without_watermark[:,tokd_input["input_ids"].shape[-1]:]
#         output_with_watermark = output_with_watermark[:,tokd_input["input_ids"].shape[-1]:]
#
#     decoded_output_without_watermark = tokenizer.batch_decode(output_without_watermark, skip_special_tokens=True)[0]
#     decoded_output_with_watermark = tokenizer.batch_decode(output_with_watermark, skip_special_tokens=True)[0]
#
#     return (redecoded_input,
#             int(truncation_warning),
#             decoded_output_without_watermark,
#             decoded_output_with_watermark,
#             args)
#             # decoded_output_with_watermark)
#
# def format_names(s):
#     """Format names for the gradio demo interface"""
#     s=s.replace("num_tokens_scored","Tokens Counted (T)")
#     s=s.replace("num_green_tokens","# Tokens in Greenlist")
#     s=s.replace("green_fraction","Fraction of T in Greenlist")
#     s=s.replace("z_score","z-score")
#     s=s.replace("p_value","p value")
#     s=s.replace("prediction","Prediction")
#     s=s.replace("confidence","Confidence")
#     return s
#
# def list_format_scores(score_dict, detection_threshold):
#     """Format the detection metrics into a gradio dataframe input format"""
#     lst_2d = []
#     # lst_2d.append(["z-score threshold", f"{detection_threshold}"])
#     for k,v in score_dict.items():
#         if k=='green_fraction':
#             lst_2d.append([format_names(k), f"{v:.1%}"])
#         elif k=='confidence':
#             lst_2d.append([format_names(k), f"{v:.3%}"])
#         elif isinstance(v, float):
#             lst_2d.append([format_names(k), f"{v:.3g}"])
#         elif isinstance(v, bool):
#             lst_2d.append([format_names(k), ("Watermarked" if v else "Human/Unwatermarked")])
#         else:
#             lst_2d.append([format_names(k), f"{v}"])
#     if "confidence" in score_dict:
#         lst_2d.insert(-2,["z-score Threshold", f"{detection_threshold}"])
#     else:
#         lst_2d.insert(-1,["z-score Threshold", f"{detection_threshold}"])
#     return lst_2d
#
# def detect(input_text, args, device=None, tokenizer=None):
#     """Instantiate the WatermarkDetection object and call detect on
#         the input text returning the scores and outcome of the test"""
#     watermark_detector = WatermarkDetector(vocab=list(tokenizer.get_vocab().values()),
#                                         gamma=args.gamma,
#                                         seeding_scheme=args.seeding_scheme,
#                                         device=device,
#                                         tokenizer=tokenizer,
#                                         z_threshold=args.detection_z_threshold,
#                                         normalizers=args.normalizers,
#                                         ignore_repeated_bigrams=args.ignore_repeated_bigrams,
#                                         select_green_tokens=args.select_green_tokens)
#     if len(input_text)-1 > watermark_detector.min_prefix_len:
#         score_dict = watermark_detector.detect(input_text)
#         # output = str_format_scores(score_dict, watermark_detector.z_threshold)
#         output = list_format_scores(score_dict, watermark_detector.z_threshold)
#     else:
#         # output = (f"Error: string not long enough to compute watermark presence.")
#         output = [["Error","string too short to compute metrics"]]
#         output += [["",""] for _ in range(6)]
#     return output, args
#
# class Seafoam(Base):
#     def __init__(
#         self,
#         *,
#         primary_hue: colors.Color | str = colors.emerald,
#         secondary_hue: colors.Color | str = colors.blue,
#         neutral_hue: colors.Color | str = colors.blue,
#         spacing_size: sizes.Size | str = sizes.spacing_md,
#         radius_size: sizes.Size | str = sizes.radius_md,
#         text_size: sizes.Size | str = sizes.text_lg,
#         font: fonts.Font
#         | str
#         | Iterable[fonts.Font | str] = (
#             fonts.GoogleFont("Quicksand"),
#             "ui-sans-serif",
#             "sans-serif",
#         ),
#         font_mono: fonts.Font
#         | str
#         | Iterable[fonts.Font | str] = (
#             fonts.GoogleFont("IBM Plex Mono"),
#             "ui-monospace",
#             "monospace",
#         ),
#     ):
#         super().__init__(
#             primary_hue=primary_hue,
#             secondary_hue=secondary_hue,
#             neutral_hue=neutral_hue,
#             spacing_size=spacing_size,
#             radius_size=radius_size,
#             text_size=text_size,
#             font=font,
#             font_mono=font_mono,
#         )
#         super().set(
#             body_background_fill="repeating-linear-gradient(45deg, *primary_200, *primary_200 10px, *primary_50 10px, *primary_50 20px)",
#             body_background_fill_dark="repeating-linear-gradient(45deg, *primary_800, *primary_800 10px, *primary_900 10px, *primary_900 20px)",
#             button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
#             button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
#             button_primary_text_color="white",
#             button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
#             slider_color="*secondary_300",
#             slider_color_dark="*secondary_600",
#             block_title_text_weight="600",
#             block_border_width="3px",
#             block_shadow="*shadow_drop_lg",
#             button_shadow="*shadow_drop_lg",
#             button_large_padding="32px",
#         )
#
# seafoam = Seafoam()
#
# def run_gradio(args, model=None, device=None, tokenizer=None):
#     """Define and launch the gradio demo interface"""
#     generate_partial = partial(generate, model=model, device=device, tokenizer=tokenizer)
#     detect_partial = partial(detect, device=device, tokenizer=tokenizer)
#
#     # with gr.Blocks(theme="shivi/calm_seafoam") as demo:
#     # with gr.Blocks(theme="finlaymacklon/smooth_slate") as demo:
#     # with gr.Blocks(theme="freddyaboulton/test-blue") as demo:
#     with gr.Blocks(theme="xiaobaiyuan/theme_brief") as demo:
#         gr.Markdown(
#             """
#             # 💧 大语言模型水印 🔍
#             """
#         )
#
#         with gr.Accordion("参数说明", open=False):
#             gr.Markdown(
#                 """
#                 - `z分数阈值` : 假设检验的截断值。
#                 - `标记个数 (T)` : 检测算法计算的输出中计数的标记数。
#                     在简单的单个标记种子方案中,第一个标记被省略,因为它没有前缀标记,无法为其生成绿色列表。
#                     在底部面板中描述的“忽略重复二元组”检测算法下,如果存在大量重复,这个数量可能远小于生成的总标记数。
#                 - `绿色列表中的标记数目` : 观察到的落在各自绿色列表中的标记数。
#                 - `T中含有绿色列表标记的比例` :  `绿色列表中的标记数目` / `T`。预期对于人类/非水印文本,这个比例大约等于 gamma。
#                 - `z分数` : 检测假设检验的检验统计量。如果大于 `z分数阈值`,则“拒绝零假设”,即文本是人类/非水印的,推断它是带有水印的。
#                 - `p值` : 在零假设下观察到计算的 `z-分数` 的概率。
#                     这是在不知道水印程序/绿色列表的情况下观察到 'T中含有绿色列表标记的比例' 的概率。
#                     如果这个值非常小,我们有信心认为这么多绿色标记不是随机选择的。
#                 -  `预测` : 假设检验的结果,即观察到的 `z分数` 是否高于 `z分数阈值`。
#                 - `置信度` : 如果我们拒绝零假设,并且 `预测` 是“Watermarked”,那么我们报告 1-`p 值` 来表示基于这个 `z分数` 观察的检测置信度的不可能性。
#                 """
#             )
#
#         with gr.Accordion("关于模型能力的说明", open=True):
#             gr.Markdown(
#                 """
#                 本演示使用适用于单个 GPU 的开源语言模型。这些模型比专有商业工具(如 ChatGPT、Claude 或 Bard)的能力更弱。
#
#                 还有一件事,我们使用语言模型旨在“完成”您的提示,而不是经过微调以遵循指令的模型。
#                 为了获得最佳结果,请使用一些组成段落开头的句子提示模型,然后让它“继续”您的段落。
#                 一些示例包括维基百科文章的开头段落或故事的前几句话。
#                 结尾处中断的较长提示将产生更流畅的生成。
#                 """
#             )
#
#         gr.Markdown(f"语言模型: {args.model_name_or_path} {'(float16 mode)' if args.load_fp16 else ''}")
#
#         # Construct state for parameters, define updates and toggles
#         default_prompt = args.__dict__.pop("default_prompt")
#         session_args = gr.State(value=args)
#
#         with gr.Tab("生成检测"):
#             with gr.Row():
#                 prompt = gr.Textbox(label=f"提示词", interactive=True,lines=10,max_lines=10, value=default_prompt)
#             with gr.Row():
#                 generate_btn = gr.Button("生成")
#             with gr.Row():
#                 with gr.Column(scale=2):
#                     with gr.Tab("未嵌入水印输出的文本"):
#                         output_without_watermark = gr.Textbox(label=None, interactive=False, lines=14,
#                                                                   max_lines=14, show_label=False)
#                     with gr.Tab("高亮"):
#                         highlight_output_without_watermark = gr.Textbox(label=None, interactive=False, lines=14,
#                                                                   max_lines=14, show_label=False)
#                 with gr.Column(scale=1):
#                     # without_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False,lines=14,max_lines=14)
#                     without_watermark_detection_result = gr.Dataframe(headers=["参数", "值"], interactive=False,
#                                                                       row_count=7, col_count=2)
#
#
#             with gr.Row():
#                 with gr.Column(scale=2):
#                     with gr.Tab("嵌入了水印输出的文本"):
#                         output_with_watermark = gr.Textbox(label=None, interactive=False, lines=14,
#                                                            max_lines=14, show_label=False)
#                     with gr.Tab("高亮"):
#                         highlight_output_with_watermark = gr.Textbox(label=None, interactive=False, lines=14,
#                                                            max_lines=14, show_label=False)
#                 with gr.Column(scale=1):
#                     # with_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False,lines=14,max_lines=14)
#                     with_watermark_detection_result = gr.Dataframe(headers=["参数", "值"], interactive=False,
#                                                                    row_count=7, col_count=2)
#
#
#             redecoded_input = gr.Textbox(visible=False)
#             truncation_warning = gr.Number(visible=False)
#             def truncate_prompt(redecoded_input, truncation_warning, orig_prompt, args):
#                 if truncation_warning:
#                     return redecoded_input + f"\n\n[Prompt was truncated before generation due to length...]", args
#                 else:
#                     return orig_prompt, args
#
#         with gr.Tab("仅检测"):
#             with gr.Row():
#                 with gr.Column(scale=2):
#                     detection_input = gr.Textbox(label="待分析文本", interactive=True, lines=14, max_lines=14)
#                 with gr.Column(scale=1):
#                     # detection_result = gr.Textbox(label="Detection Result", interactive=False,lines=14,max_lines=14)
#                     detection_result = gr.Dataframe(headers=["参数", "值"], interactive=False, row_count=7, col_count=2)
#             with gr.Row():
#                 detect_btn = gr.Button("检测")
#
#         # Parameter selection group
#         with gr.Accordion("高级设置", open=False):
#             with gr.Row():
#                 with gr.Column(scale=1):
#                     gr.Markdown(f"#### 生成参数")
#                     with gr.Row():
#                         decoding = gr.Radio(label="解码方式", choices=["multinomial", "greedy"],
#                                             value=("multinomial" if args.use_sampling else "greedy"))
#
#                     with gr.Row():
#                         sampling_temp = gr.Slider(label="采样随机性多样性权重", minimum=0.1, maximum=1.0, step=0.1,
#                                                   value=args.sampling_temp, visible=True)
#                     with gr.Row():
#                         generation_seed = gr.Number(label="生成种子", value=args.generation_seed, interactive=True)
#                     with gr.Row():
#                         n_beams = gr.Dropdown(label="束搜索路数", choices=list(range(1, 11, 1)), value=args.n_beams,
#                                               visible=(not args.use_sampling))
#                     with gr.Row():
#                         max_new_tokens = gr.Slider(label="生成最大标记数", minimum=10, maximum=1000, step=10,
#                                                    value=args.max_new_tokens)
#
#                 with gr.Column(scale=1):
#                     gr.Markdown(f"#### 水印参数")
#                     with gr.Row():
#                         gamma = gr.Slider(label="gamma", minimum=0.1, maximum=0.9, step=0.05, value=args.gamma)
#                     with gr.Row():
#                         delta = gr.Slider(label="delta", minimum=0.0, maximum=10.0, step=0.1, value=args.delta)
#                     gr.Markdown(f"#### 检测参数")
#                     with gr.Row():
#                         detection_z_threshold = gr.Slider(label="z-score 阈值", minimum=0.0, maximum=10.0, step=0.1,
#                                                           value=args.detection_z_threshold)
#                     with gr.Row():
#                         ignore_repeated_bigrams = gr.Checkbox(label="忽略重复 Bigram")
#                     with gr.Row():
#                         normalizers = gr.CheckboxGroup(label="正则化器",
#                                                        choices=["unicode", "homoglyphs", "truecase"],
#                                                        value=args.normalizers)
#             # with gr.Accordion("Actual submitted parameters:",open=False):
#             with gr.Row():
#                 gr.Markdown(
#                     f"_提示: 滑块更新有延迟。点击滑动条或使用右侧的数字窗口可以帮助更新。下方窗口显示当前的设置。_")
#             with gr.Row():
#                 current_parameters = gr.Textbox(label="当前参数", value=args, interactive=False, lines=6)
#             with gr.Accordion("保留设置", open=False):
#                 with gr.Row():
#                     with gr.Column(scale=1):
#                         seed_separately = gr.Checkbox(label="红绿分别生成", value=args.seed_separately)
#                     with gr.Column(scale=1):
#                         select_green_tokens = gr.Checkbox(label="从分区中选择'greenlist'",
#                                                           value=args.select_green_tokens)
#
#         with gr.Accordion("关于设置", open=False):
#             gr.Markdown(
#                 """
#                 #### 生成参数:
#
#                 - 解码方法:我们可以使用多项式采样或贪婪解码来从模型中生成标记。
#                 - 采样温度:如果使用多项式采样,可以设置采样分布的温度。
#                               0.0 相当于贪婪解码,而 1.0 是下一个标记分布中的最大变异性/熵。
#                               0.7 在保持对模型对前几个候选者的估计准确性的同时增加了多样性。对于贪婪解码无效。
#                 - 生成种子:在运行生成之前传递给 torch 随机数生成器的整数。使多项式采样策略输出可复现。对于贪婪解码无效。
#                 - 并行数:当使用贪婪解码时,还可以将并行数设置为 > 1 以启用波束搜索。
#                             这在多项式采样中未实现/排除在论文中,但可能会在未来添加。
#                 - 最大生成标记数:传递给生成方法的 `max_new_tokens` 参数,以在特定数量的新标记处停止输出。
#                                     请注意,根据提示,模型可以生成较少的标记。
#                                     这将隐含地将可能的提示标记数量设置为模型的最大输入长度减去 `max_new_tokens`,
#                                     并且输入将相应地被截断。
#
#                 #### 水印参数:
#
#                 - gamma:每次生成步骤将词汇表分成绿色列表的部分。较小的 gamma 值通过使得有水印的模型能够更好地与人类/无水印文本区分,
#                           从而创建了更强的水印,因为它会更倾向于从较小的绿色集合中进行采样,使得这些标记不太可能是偶然发生的。
#                 - delta:在每个生成步骤中,在采样/选择下一个标记之前,为绿色列表中的每个标记的对数概率添加正偏差。
#                           较高的 delta 值意味着绿色列表标记更受有水印的模型青睐,并且随着偏差的增大,水印从“软性”过渡到“硬性”。
#                           对于硬性水印,几乎所有的标记都是绿色的,但这可能对生成质量产生不利影响,特别是当分布的灵活性有限时。
#
#                 #### 检测器参数:
#
#                 - z-score 阈值:假设检验的 z-score 截断值。较高的阈值(例如 4.0)使得预测人类/无水印文本是有水印的
#                                   (_false positives_)的可能性非常低,因为一个真正的包含大量标记的人类文本几乎不可能达到那么高的 z-score。
#                                   较低的阈值将捕捉更多的真正有水印的文本,因为一些有水印的文本可能包含较少的绿色标记并获得较低的 z-score,
#                                   但仍然通过较低的门槛被标记为“有水印”。然而,较低的阈值会增加被错误地标记为有水印的具有略高于平均绿色标记数的人类文本的几率。
#                                   4.0-5.0 提供了极低的误报率,同时仍然准确地捕捉到大多数有水印的文本。
#                 - 忽略重复的双字母组合:此备用检测算法在检测期间只考虑文本中的唯一双字母组合,
#                                           根据每对中的第一个计算绿色列表,并检查第二个是否在列表内。
#                                           这意味着 `T` 现在是文本中唯一的双字母组合的数量,
#                                           如果文本包含大量重复,那么它将少于生成的总标记数。
#                                           有关更详细的讨论,请参阅论文。
#                 - 标准化:我们实现了一些基本的标准化,以防止文本在检测过程中受到各种对抗性扰动。
#                           目前,我们支持将所有字符转换为 Unicode,使用规范形式替换同形字符,并标准化大小写。
#                 """
#             )
#
#         # gr.HTML("""
#         #         <p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
#         #             Follow the github link at the top and host the demo on your own GPU hardware to test out larger models.
#         #         <br/>
#         #         <a href="https://huggingface.co/spaces/tomg-group-umd/lm-watermarking?duplicate=true">
#         #         <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
#         #         <p/>
#         #         """)
#
#         # Register main generation tab click, outputing generations as well as a the encoded+redecoded+potentially truncated prompt and flag
#         generate_btn.click(fn=generate_partial, inputs=[prompt,session_args], outputs=[redecoded_input, truncation_warning, output_without_watermark, output_with_watermark,session_args])
#         # Show truncated version of prompt if truncation occurred
#         redecoded_input.change(fn=truncate_prompt, inputs=[redecoded_input,truncation_warning,prompt,session_args], outputs=[prompt,session_args])
#         # Call detection when the outputs (of the generate function) are updated
#         output_without_watermark.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
#         output_with_watermark.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
#         # Register main detection tab click
#         detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result, session_args])
#
#         # State management logic
#         # update callbacks that change the state dict
#         def update_sampling_temp(session_state, value): session_state.sampling_temp = float(value); return session_state
#         def update_generation_seed(session_state, value): session_state.generation_seed = int(value); return session_state
#         def update_gamma(session_state, value): session_state.gamma = float(value); return session_state
#         def update_delta(session_state, value): session_state.delta = float(value); return session_state
#         def update_detection_z_threshold(session_state, value): session_state.detection_z_threshold = float(value); return session_state
#         def update_decoding(session_state, value):
#             if value == "multinomial":
#                 session_state.use_sampling = True
#             elif value == "greedy":
#                 session_state.use_sampling = False
#             return session_state
#         def toggle_sampling_vis(value):
#             if value == "multinomial":
#                 return gr.update(visible=True)
#             elif value == "greedy":
#                 return gr.update(visible=False)
#         def toggle_sampling_vis_inv(value):
#             if value == "multinomial":
#                 return gr.update(visible=False)
#             elif value == "greedy":
#                 return gr.update(visible=True)
#         def update_n_beams(session_state, value): session_state.n_beams = int(value); return session_state
#         def update_max_new_tokens(session_state, value): session_state.max_new_tokens = int(value); return session_state
#         def update_ignore_repeated_bigrams(session_state, value): session_state.ignore_repeated_bigrams = value; return session_state
#         def update_normalizers(session_state, value): session_state.normalizers = value; return session_state
#         def update_seed_separately(session_state, value): session_state.seed_separately = value; return session_state
#         def update_select_green_tokens(session_state, value): session_state.select_green_tokens = value; return session_state
#         # registering callbacks for toggling the visibilty of certain parameters
#         decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[sampling_temp])
#         decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[generation_seed])
#         decoding.change(toggle_sampling_vis_inv,inputs=[decoding], outputs=[n_beams])
#         # registering all state update callbacks
#         decoding.change(update_decoding,inputs=[session_args, decoding], outputs=[session_args])
#         sampling_temp.change(update_sampling_temp,inputs=[session_args, sampling_temp], outputs=[session_args])
#         generation_seed.change(update_generation_seed,inputs=[session_args, generation_seed], outputs=[session_args])
#         n_beams.change(update_n_beams,inputs=[session_args, n_beams], outputs=[session_args])
#         max_new_tokens.change(update_max_new_tokens,inputs=[session_args, max_new_tokens], outputs=[session_args])
#         gamma.change(update_gamma,inputs=[session_args, gamma], outputs=[session_args])
#         delta.change(update_delta,inputs=[session_args, delta], outputs=[session_args])
#         detection_z_threshold.change(update_detection_z_threshold,inputs=[session_args, detection_z_threshold], outputs=[session_args])
#         ignore_repeated_bigrams.change(update_ignore_repeated_bigrams,inputs=[session_args, ignore_repeated_bigrams], outputs=[session_args])
#         normalizers.change(update_normalizers,inputs=[session_args, normalizers], outputs=[session_args])
#         seed_separately.change(update_seed_separately,inputs=[session_args, seed_separately], outputs=[session_args])
#         select_green_tokens.change(update_select_green_tokens,inputs=[session_args, select_green_tokens], outputs=[session_args])
#         # register additional callback on button clicks that updates the shown parameters window
#         generate_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
#         detect_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
#         # When the parameters change, display the update and fire detection, since some detection params dont change the model output.
#         gamma.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
#         gamma.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
#         gamma.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
#         gamma.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
#         detection_z_threshold.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
#         detection_z_threshold.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
#         detection_z_threshold.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
#         detection_z_threshold.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
#         ignore_repeated_bigrams.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
#         ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
#         ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
#         ignore_repeated_bigrams.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
#         normalizers.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
#         normalizers.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
#         normalizers.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
#         normalizers.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
#         select_green_tokens.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
#         select_green_tokens.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
#         select_green_tokens.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
#         select_green_tokens.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
#
#
#     demo.queue(concurrency_count=3)
#
#     if args.demo_public:
#         demo.launch(share=True) # exposes app to the internet via randomly generated link
#     else:
#         demo.launch()
#
# def main(args):
#     """Run a command line version of the generation and detection operations
#         and optionally launch and serve the gradio demo"""
#     # Initial arg processing and log
#     args.normalizers = (args.normalizers.split(",") if args.normalizers else [])
#     print(args)
#
#     if not args.skip_model_load:
#         model, tokenizer, device = load_model(args)
#     else:
#         model, tokenizer, device = None, None, None
#
#     # Generate and detect, report to stdout
#     if not args.skip_model_load:
#         input_text = (
#         "The diamondback terrapin or simply terrapin (Malaclemys terrapin) is a "
#         "species of turtle native to the brackish coastal tidal marshes of the "
#         "Northeastern and southern United States, and in Bermuda.[6] It belongs "
#         "to the monotypic genus Malaclemys. It has one of the largest ranges of "
#         "all turtles in North America, stretching as far south as the Florida Keys "
#         "and as far north as Cape Cod.[7] The name 'terrapin' is derived from the "
#         "Algonquian word torope.[8] It applies to Malaclemys terrapin in both "
#         "British English and American English. The name originally was used by "
#         "early European settlers in North America to describe these brackish-water "
#         "turtles that inhabited neither freshwater habitats nor the sea. It retains "
#         "this primary meaning in American English.[8] In British English, however, "
#         "other semi-aquatic turtle species, such as the red-eared slider, might "
#         "also be called terrapins. The common name refers to the diamond pattern "
#         "on top of its shell (carapace), but the overall pattern and coloration "
#         "vary greatly. The shell is usually wider at the back than in the front, "
#         "and from above it appears wedge-shaped. The shell coloring can vary "
#         "from brown to grey, and its body color can be grey, brown, yellow, "
#         "or white. All have a unique pattern of wiggly, black markings or spots "
#         "on their body and head. The diamondback terrapin has large webbed "
#         "feet.[9] The species is"
#         )
#
#         args.default_prompt = input_text
#
#         term_width = 80
#         print("#"*term_width)
#         print("Prompt:")
#         print(input_text)
#
#         _, _, decoded_output_without_watermark, decoded_output_with_watermark, _ = generate(input_text,
#                                                                                             args,
#                                                                                             model=model,
#                                                                                             device=device,
#                                                                                             tokenizer=tokenizer)
#         without_watermark_detection_result = detect(decoded_output_without_watermark,
#                                                     args,
#                                                     device=device,
#                                                     tokenizer=tokenizer)
#         with_watermark_detection_result = detect(decoded_output_with_watermark,
#                                                  args,
#                                                  device=device,
#                                                  tokenizer=tokenizer)
#
#         print("#"*term_width)
#         print("Output without watermark:")
#         print(decoded_output_without_watermark)
#         print("-"*term_width)
#         print(f"Detection result @ {args.detection_z_threshold}:")
#         pprint(without_watermark_detection_result)
#         print("-"*term_width)
#
#         print("#"*term_width)
#         print("Output with watermark:")
#         print(decoded_output_with_watermark)
#         print("-"*term_width)
#         print(f"Detection result @ {args.detection_z_threshold}:")
#         pprint(with_watermark_detection_result)
#         print("-"*term_width)
#
#
#     # Launch the app to generate and detect interactively (implements the hf space demo)
#     if args.run_gradio:
#         run_gradio(args, model=model, tokenizer=tokenizer, device=device)
#
#     return
#
# if __name__ == "__main__":
#
#     args = parse_args()
#     print(args)
#
#     main(args)

# coding=utf-8
# Copyright 2023 Authors of "A Watermark for Large Language Models"
# available at https://arxiv.org/abs/2301.10226
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# coding=utf-8
# Copyright 2023 Authors of "A Watermark for Large Language Models"
# available at https://arxiv.org/abs/2301.10226
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import argparse
from pprint import pprint
from functools import partial

import numpy  # for gradio hot reload
import gradio as gr

import torch

from transformers import (AutoTokenizer,
                          AutoModelForSeq2SeqLM,
                          AutoModelForCausalLM,
                          LogitsProcessorList)

# from local_tokenizers.tokenization_llama import LLaMATokenizer

from transformers import GPT2TokenizerFast

OPT_TOKENIZER = GPT2TokenizerFast

from watermark_processor import WatermarkLogitsProcessor, WatermarkDetector

# ALPACA_MODEL_NAME = "alpaca"
# ALPACA_MODEL_TOKENIZER = LLaMATokenizer
# ALPACA_TOKENIZER_PATH = "/cmlscratch/jkirchen/llama"

# FIXME correct lengths for all models
API_MODEL_MAP = {
    "google/flan-ul2": {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
    "google/flan-t5-xxl": {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
    "EleutherAI/gpt-neox-20b": {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
    # "bigscience/bloom"        : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
    # "bigscience/bloomz"       : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
}


def str2bool(v):
    """Util function for user friendly boolean flag args"""
    if isinstance(v, bool):
        return v
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')


def parse_args():
    """Command line argument specification"""

    parser = argparse.ArgumentParser(
        description="A minimum working example of applying the watermark to any LLM that supports the huggingface 🤗 `generate` API")

    parser.add_argument(
        "--run_gradio",
        type=str2bool,
        default=True,
        help="Whether to launch as a gradio demo. Set to False if not installed and want to just run the stdout version.",
    )
    parser.add_argument(
        "--demo_public",
        type=str2bool,
        default=False,
        help="Whether to expose the gradio demo to the internet.",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        default="facebook/opt-6.7b",
        help="Main model, path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--prompt_max_length",
        type=int,
        default=None,
        help="Truncation length for prompt, overrides model config's max length field.",
    )
    parser.add_argument(
        "--max_new_tokens",
        type=int,
        default=200,
        help="Maximmum number of new tokens to generate.",
    )
    parser.add_argument(
        "--generation_seed",
        type=int,
        default=123,
        help="Seed for setting the torch global rng prior to generation.",
    )
    parser.add_argument(
        "--use_sampling",
        type=str2bool,
        default=True,
        help="Whether to generate using multinomial sampling.",
    )
    parser.add_argument(
        "--sampling_temp",
        type=float,
        default=0.7,
        help="Sampling temperature to use when generating using multinomial sampling.",
    )
    parser.add_argument(
        "--n_beams",
        type=int,
        default=1,
        help="Number of beams to use for beam search. 1 is normal greedy decoding",
    )
    parser.add_argument(
        "--use_gpu",
        type=str2bool,
        default=True,
        help="Whether to run inference and watermark hashing/seeding/permutation on gpu.",
    )
    parser.add_argument(
        "--seeding_scheme",
        type=str,
        default="simple_1",
        help="Seeding scheme to use to generate the greenlists at each generation and verification step.",
    )
    parser.add_argument(
        "--gamma",
        type=float,
        default=0.25,
        help="The fraction of the vocabulary to partition into the greenlist at each generation and verification step.",
    )
    parser.add_argument(
        "--delta",
        type=float,
        default=2.0,
        help="The amount/bias to add to each of the greenlist token logits before each token sampling step.",
    )
    parser.add_argument(
        "--normalizers",
        type=str,
        default="",
        help="Single or comma separated list of the preprocessors/normalizer names to use when performing watermark detection.",
    )
    parser.add_argument(
        "--ignore_repeated_bigrams",
        type=str2bool,
        default=False,
        help="Whether to use the detection method that only counts each unqiue bigram once as either a green or red hit.",
    )
    parser.add_argument(
        "--detection_z_threshold",
        type=float,
        default=4.0,
        help="The test statistic threshold for the detection hypothesis test.",
    )
    parser.add_argument(
        "--select_green_tokens",
        type=str2bool,
        default=True,
        help="How to treat the permuation when selecting the greenlist tokens at each step. Legacy is (False) to pick the complement/reds first.",
    )
    parser.add_argument(
        "--skip_model_load",
        type=str2bool,
        default=False,
        help="Skip the model loading to debug the interface.",
    )
    parser.add_argument(
        "--seed_separately",
        type=str2bool,
        default=True,
        help="Whether to call the torch seed function before both the unwatermarked and watermarked generate calls.",
    )
    parser.add_argument(
        "--load_fp16",
        type=str2bool,
        default=False,
        help="Whether to run model in float16 precsion.",
    )
    args = parser.parse_args()
    return args


def load_model(args):
    """Load and return the model and tokenizer"""

    args.is_seq2seq_model = any([(model_type in args.model_name_or_path) for model_type in ["t5", "T0"]])
    args.is_decoder_only_model = any(
        [(model_type in args.model_name_or_path) for model_type in ["gpt", "opt", "bloom"]])
    if args.is_seq2seq_model:
        model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path)
    elif args.is_decoder_only_model:
        if args.load_fp16:
            model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, torch_dtype=torch.float16,
                                                         device_map='auto')
        else:
            model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path)
    else:
        raise ValueError(f"Unknown model type: {args.model_name_or_path}")

    if args.use_gpu:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        if args.load_fp16:
            pass
        else:
            model = model.to(device)
    else:
        device = "cpu"
    model.eval()

    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)

    return model, tokenizer, device


from text_generation import InferenceAPIClient
from requests.exceptions import ReadTimeout


def generate_with_api(prompt, args):
    # hf_api_key = os.environ.get("HF_API_KEY")
    hf_api_key = "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"
    if hf_api_key is None:
        raise ValueError("HF_API_KEY environment variable not set, cannot use HF API to generate text.")

    client = InferenceAPIClient(args.model_name_or_path, token=hf_api_key, timeout=60)

    assert args.n_beams == 1, "HF API models do not support beam search."
    generation_params = {
        "max_new_tokens": args.max_new_tokens,
        "do_sample": args.use_sampling,
    }
    if args.use_sampling:
        generation_params["temperature"] = args.sampling_temp
        generation_params["seed"] = args.generation_seed

    timeout_msg = "[Model API timeout error. Try reducing the max_new_tokens parameter or the prompt length.]"
    try:
        generation_params["watermark"] = False
        without_watermark_iterator = client.generate_stream(prompt, **generation_params)
    except ReadTimeout as e:
        print(e)
        without_watermark_iterator = (char for char in timeout_msg)
    try:
        generation_params["watermark"] = True
        with_watermark_iterator = client.generate_stream(prompt, **generation_params)
    except ReadTimeout as e:
        print(e)
        with_watermark_iterator = (char for char in timeout_msg)

    all_without_words, all_with_words = "", ""
    for without_word, with_word in zip(without_watermark_iterator, with_watermark_iterator):
        all_without_words += without_word.token.text
        all_with_words += with_word.token.text
        yield all_without_words, all_with_words


def check_prompt(prompt, args, tokenizer, model=None, device=None):
    # This applies to both the local and API model scenarios
    if args.model_name_or_path in API_MODEL_MAP:
        args.prompt_max_length = API_MODEL_MAP[args.model_name_or_path]["max_length"]
    elif hasattr(model.config, "max_position_embedding"):
        args.prompt_max_length = model.config.max_position_embeddings - args.max_new_tokens
    else:
        args.prompt_max_length = 2048 - args.max_new_tokens

    tokd_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True, truncation=True,
                           max_length=args.prompt_max_length).to(device)
    truncation_warning = True if tokd_input["input_ids"].shape[-1] == args.prompt_max_length else False
    redecoded_input = tokenizer.batch_decode(tokd_input["input_ids"], skip_special_tokens=True)[0]

    return (redecoded_input,
            int(truncation_warning),
            args)


def generate(prompt, args, tokenizer, model=None, device=None):
    """Instatiate the WatermarkLogitsProcessor according to the watermark parameters
       and generate watermarked text by passing it to the generate method of the model
       as a logits processor. """

    print(f"Generating with {args}")
    print(f"Prompt: {prompt}")

    if args.model_name_or_path in API_MODEL_MAP:
        api_outputs = generate_with_api(prompt, args)
        yield from api_outputs
    else:
        tokd_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True, truncation=True,
                               max_length=args.prompt_max_length).to(device)

        watermark_processor = WatermarkLogitsProcessor(vocab=list(tokenizer.get_vocab().values()),
                                                       gamma=args.gamma,
                                                       delta=args.delta,
                                                       seeding_scheme=args.seeding_scheme,
                                                       select_green_tokens=args.select_green_tokens)

        gen_kwargs = dict(max_new_tokens=args.max_new_tokens)

        if args.use_sampling:
            gen_kwargs.update(dict(
                do_sample=True,
                top_k=0,
                temperature=args.sampling_temp
            ))
        else:
            gen_kwargs.update(dict(
                num_beams=args.n_beams
            ))

        generate_without_watermark = partial(
            model.generate,
            **gen_kwargs
        )
        generate_with_watermark = partial(
            model.generate,
            logits_processor=LogitsProcessorList([watermark_processor]),
            **gen_kwargs
        )

        torch.manual_seed(args.generation_seed)
        output_without_watermark = generate_without_watermark(**tokd_input)

        # optional to seed before second generation, but will not be the same again generally, unless delta==0.0, no-op watermark
        if args.seed_separately:
            torch.manual_seed(args.generation_seed)
        output_with_watermark = generate_with_watermark(**tokd_input)

        if args.is_decoder_only_model:
            # need to isolate the newly generated tokens
            output_without_watermark = output_without_watermark[:, tokd_input["input_ids"].shape[-1]:]
            output_with_watermark = output_with_watermark[:, tokd_input["input_ids"].shape[-1]:]

        decoded_output_without_watermark = tokenizer.batch_decode(output_without_watermark, skip_special_tokens=True)[0]
        decoded_output_with_watermark = tokenizer.batch_decode(output_with_watermark, skip_special_tokens=True)[0]

        # mocking the API outputs in a whitespace split generator style
        all_without_words, all_with_words = "", ""
        for without_word, with_word in zip(decoded_output_without_watermark.split(),
                                           decoded_output_with_watermark.split()):
            all_without_words += without_word + " "
            all_with_words += with_word + " "
            yield all_without_words, all_with_words


def format_names(s):
    """Format names for the gradio demo interface"""
    s = s.replace("num_tokens_scored", "Tokens Counted (T)")
    s = s.replace("num_green_tokens", "# Tokens in Greenlist")
    s = s.replace("green_fraction", "Fraction of T in Greenlist")
    s = s.replace("z_score", "z-score")
    s = s.replace("p_value", "p value")
    s = s.replace("prediction", "Prediction")
    s = s.replace("confidence", "Confidence")
    return s


def list_format_scores(score_dict, detection_threshold):
    """Format the detection metrics into a gradio dataframe input format"""
    lst_2d = []
    for k, v in score_dict.items():
        if k == 'green_fraction':
            lst_2d.append([format_names(k), f"{v:.1%}"])
        elif k == 'confidence':
            lst_2d.append([format_names(k), f"{v:.3%}"])
        elif isinstance(v, float):
            lst_2d.append([format_names(k), f"{v:.3g}"])
        elif isinstance(v, bool):
            lst_2d.append([format_names(k), ("Watermarked" if v else "Human/Unwatermarked")])
        else:
            lst_2d.append([format_names(k), f"{v}"])
    if "confidence" in score_dict:
        lst_2d.insert(-2, ["z-score Threshold", f"{detection_threshold}"])
    else:
        lst_2d.insert(-1, ["z-score Threshold", f"{detection_threshold}"])
    return lst_2d


def detect(input_text, args, tokenizer, device=None, return_green_token_mask=True):
    """Instantiate the WatermarkDetection object and call detect on
        the input text returning the scores and outcome of the test"""

    print(f"Detecting with {args}")
    print(f"Detection Tokenizer: {type(tokenizer)}")

    watermark_detector = WatermarkDetector(vocab=list(tokenizer.get_vocab().values()),
                                           gamma=args.gamma,
                                           seeding_scheme=args.seeding_scheme,
                                           device=device,
                                           tokenizer=tokenizer,
                                           z_threshold=args.detection_z_threshold,
                                           normalizers=args.normalizers,
                                           ignore_repeated_bigrams=args.ignore_repeated_bigrams,
                                           select_green_tokens=args.select_green_tokens)
    # for now, just don't display the green token mask
    # if we're using normalizers or ignore_repeated_bigrams
    if args.normalizers != [] or args.ignore_repeated_bigrams:
        return_green_token_mask = False

    error = False
    green_token_mask = None
    if input_text == "":
        error = True
    else:
        try:
            score_dict = watermark_detector.detect(input_text, return_green_token_mask=return_green_token_mask)
            green_token_mask = score_dict.pop("green_token_mask", None)
            output = list_format_scores(score_dict, watermark_detector.z_threshold)
        except ValueError as e:
            print(e)
            error = True
    if error:
        output = [["Error", "string too short to compute metrics"]]
        output += [["", ""] for _ in range(6)]

    html_output = "[No highlight markup generated]"
    if green_token_mask is not None:
        # hack bc we need a fast tokenizer with charspan support
        if "opt" in args.model_name_or_path:
            tokenizer = OPT_TOKENIZER.from_pretrained(args.model_name_or_path)

        tokens = tokenizer(input_text)
        if tokens["input_ids"][0] == tokenizer.bos_token_id:
            tokens["input_ids"] = tokens["input_ids"][1:]  # ignore attention mask
        skip = watermark_detector.min_prefix_len
        charspans = [tokens.token_to_chars(i) for i in range(skip, len(tokens["input_ids"]))]
        charspans = [cs for cs in charspans if cs is not None]  # remove the special token spans

        if len(charspans) != len(green_token_mask): breakpoint()
        assert len(charspans) == len(green_token_mask)

        tags = [(
                    f'<span class="green">{input_text[cs.start:cs.end]}</span>' if m else f'<span class="red">{input_text[cs.start:cs.end]}</span>')
                for cs, m in zip(charspans, green_token_mask)]
        html_output = f'<p>{" ".join(tags)}</p>'

    return output, args, tokenizer, html_output


def run_gradio(args, model=None, device=None, tokenizer=None):
    """Define and launch the gradio demo interface"""
    check_prompt_partial = partial(check_prompt, model=model, device=device)
    generate_partial = partial(generate, model=model, device=device)
    detect_partial = partial(detect, device=device)

    css = """
    .green { color: black!important;line-height:1.9em; padding: 0.2em 0.2em; background: #ccffcc; border-radius:0.5rem;}
    .red { color: black!important;line-height:1.9em; padding: 0.2em 0.2em; background: #ffad99; border-radius:0.5rem;}
    """

    # with gr.Blocks(theme="xiaobaiyuan/theme_brief") as demo:
    with gr.Blocks(css=css, theme="xiaobaiyuan/theme_brief") as demo:
        # Top section, greeting and instructions
        with gr.Row():
            with gr.Column(scale=9):
                gr.Markdown(
                    """
                    # 💧 大语言模型水印 🔍
                    """
                )
            with gr.Column(scale=1):
                # if model_name_or_path at startup not one of the API models then add to dropdown
                all_models = sorted(list(set(list(API_MODEL_MAP.keys()) + [args.model_name_or_path])))
                model_selector = gr.Dropdown(
                    all_models,
                    value=args.model_name_or_path,
                    label="Language Model",
                )

        with gr.Accordion("参数说明", open=False):
            gr.Markdown(
                """
                - `z分数阈值` : 假设检验的截断值。
                - `标记个数 (T)` : 检测算法计算的输出中计数的标记数。
                    在简单的单个标记种子方案中,第一个标记被省略,因为它没有前缀标记,无法为其生成绿色列表。
                    在底部面板中描述的“忽略重复二元组”检测算法下,如果存在大量重复,这个数量可能远小于生成的总标记数。
                - `绿色列表中的标记数目` : 观察到的落在各自绿色列表中的标记数。
                - `T中含有绿色列表标记的比例` :  `绿色列表中的标记数目` / `T`。预期对于人类/非水印文本,这个比例大约等于 gamma。
                - `z分数` : 检测假设检验的检验统计量。如果大于 `z分数阈值`,则“拒绝零假设”,即文本是人类/非水印的,推断它是带有水印的。
                - `p值` : 在零假设下观察到计算的 `z-分数` 的概率。
                    这是在不知道水印程序/绿色列表的情况下观察到 'T中含有绿色列表标记的比例' 的概率。
                    如果这个值非常小,我们有信心认为这么多绿色标记不是随机选择的。
                -  `预测` : 假设检验的结果,即观察到的 `z分数` 是否高于 `z分数阈值`。
                - `置信度` : 如果我们拒绝零假设,并且 `预测` 是“Watermarked”,那么我们报告 1-`p 值` 来表示基于这个 `z分数` 观察的检测置信度的不可能性。
                """
            )

        with gr.Accordion("关于模型能力的说明", open=True):
            gr.Markdown(
                """
                本演示使用适用于单个 GPU 的开源语言模型。这些模型比专有商业工具(如 ChatGPT、Claude 或 Bard)的能力更弱。

                还有一件事,我们使用语言模型旨在“完成”您的提示,而不是经过微调以遵循指令的模型。
                为了获得最佳结果,请使用一些组成段落开头的句子提示模型,然后让它“继续”您的段落。
                一些示例包括维基百科文章的开头段落或故事的前几句话。
                结尾处中断的较长提示将产生更流畅的生成。
                """
            )

        # Construct state for parameters, define updates and toggles
        default_prompt = args.__dict__.pop("default_prompt")
        session_args = gr.State(value=args)
        # note that state obj automatically calls value if it's a callable, want to avoid calling tokenizer at startup
        session_tokenizer = gr.State(value=lambda: tokenizer)
        # with gr.Row():
        #     gr.Markdown(
        #         """
        #         温馨提示:若出现ERROR,可能由于api暂未成功载入,稍等片刻即可
        #         """
        #     )
        with gr.Tab("生成检测"):
            with gr.Row():
                prompt = gr.Textbox(label=f"提示词", interactive=True,lines=10,max_lines=10, value=default_prompt)
            with gr.Row():
                generate_btn = gr.Button("生成")
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Tab("未嵌入水印输出的文本"):
                        output_without_watermark = gr.Textbox(label=None, interactive=False, lines=14,
                                                                  max_lines=14, show_label=False)
                    with gr.Tab("高亮"):
                        html_without_watermark = gr.HTML(elem_id="html-without-watermark")
                with gr.Column(scale=1):
                    # without_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False,lines=14,max_lines=14)
                    without_watermark_detection_result = gr.Dataframe(headers=["参数", "值"], interactive=False,
                                                                      row_count=7, col_count=2)

            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Tab("嵌入了水印输出的文本"):
                        output_with_watermark = gr.Textbox(label=None, interactive=False, lines=14,
                                                           max_lines=14, show_label=False)
                    with gr.Tab("高亮"):
                        html_with_watermark = gr.HTML(elem_id="html-with-watermark")
                with gr.Column(scale=1):
                    # with_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False,lines=14,max_lines=14)
                    with_watermark_detection_result = gr.Dataframe(headers=["参数", "值"], interactive=False,
                                                                   row_count=7, col_count=2)


            redecoded_input = gr.Textbox(visible=False)
            truncation_warning = gr.Number(visible=False)
            def truncate_prompt(redecoded_input, truncation_warning, orig_prompt, args):
                if truncation_warning:
                    return redecoded_input + f"\n\n[由于长度原因,提示词被截断...]", args
                else:
                    return orig_prompt, args

        with gr.Tab("仅检测"):
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Tab("待分析文本"):
                        detection_input = gr.Textbox(interactive=True, lines=14, max_lines=14,show_label=False)
                    with gr.Tab("高亮"):
                        html_detection_input = gr.HTML(elem_id="html-detection-input")
                with gr.Column(scale=1):
                    detection_result = gr.Dataframe(headers=["参数", "值"], interactive=False, row_count=7,
                                                    col_count=2)
            with gr.Row():
                detect_btn = gr.Button("检测")

        # Parameter selection group
        with gr.Accordion("高级设置", open=False):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown(f"#### 生成参数")
                    with gr.Row():
                        decoding = gr.Radio(label="解码方式", choices=["multinomial", "greedy"],
                                            value=("multinomial" if args.use_sampling else "greedy"))

                    with gr.Row():
                        sampling_temp = gr.Slider(label="采样随机性多样性权重", minimum=0.1, maximum=1.0, step=0.1,
                                                  value=args.sampling_temp, visible=True)
                    with gr.Row():
                        generation_seed = gr.Number(label="生成种子", value=args.generation_seed, interactive=True)
                    with gr.Row():
                        n_beams = gr.Dropdown(label="束搜索路数", choices=list(range(1, 11, 1)), value=args.n_beams,
                                              visible=(not args.use_sampling))
                    with gr.Row():
                        max_new_tokens = gr.Slider(label="生成最大标记数", minimum=10, maximum=1000, step=10,
                                                   value=args.max_new_tokens)

                with gr.Column(scale=1):
                    gr.Markdown(f"#### 水印参数")
                    with gr.Row():
                        gamma = gr.Slider(label="gamma", minimum=0.1, maximum=0.9, step=0.05, value=args.gamma)
                    with gr.Row():
                        delta = gr.Slider(label="delta", minimum=0.0, maximum=10.0, step=0.1, value=args.delta)
                    gr.Markdown(f"#### 检测参数")
                    with gr.Row():
                        detection_z_threshold = gr.Slider(label="z-score 阈值", minimum=0.0, maximum=10.0, step=0.1,
                                                          value=args.detection_z_threshold)
                    with gr.Row():
                        ignore_repeated_bigrams = gr.Checkbox(label="忽略重复 Bigram")
                    with gr.Row():
                        normalizers = gr.CheckboxGroup(label="正则化器",
                                                       choices=["unicode", "homoglyphs", "truecase"],
                                                       value=args.normalizers)
            # with gr.Accordion("Actual submitted parameters:",open=False):
            with gr.Row():
                gr.Markdown(
                    f"_提示: 滑块更新有延迟。点击滑动条或使用右侧的数字窗口可以帮助更新。下方窗口显示当前的设置。_")
            with gr.Row():
                current_parameters = gr.Textbox(label="当前参数", value=args, interactive=False, lines=6)
            with gr.Accordion("保留设置", open=False):
                with gr.Row():
                    with gr.Column(scale=1):
                        seed_separately = gr.Checkbox(label="红绿分别生成", value=args.seed_separately)
                    with gr.Column(scale=1):
                        select_green_tokens = gr.Checkbox(label="从分区中选择'greenlist'",
                                                          value=args.select_green_tokens)

        with gr.Accordion("关于设置", open=False):
            gr.Markdown(
                """
                #### 生成参数:

                - 解码方法:我们可以使用多项式采样或贪婪解码来从模型中生成标记。
                - 采样温度:如果使用多项式采样,可以设置采样分布的温度。
                              0.0 相当于贪婪解码,而 1.0 是下一个标记分布中的最大变异性/熵。
                              0.7 在保持对模型对前几个候选者的估计准确性的同时增加了多样性。对于贪婪解码无效。
                - 生成种子:在运行生成之前传递给 torch 随机数生成器的整数。使多项式采样策略输出可复现。对于贪婪解码无效。
                - 并行数:当使用贪婪解码时,还可以将并行数设置为 > 1 以启用波束搜索。
                            这在多项式采样中未实现/排除在论文中,但可能会在未来添加。
                - 最大生成标记数:传递给生成方法的 `max_new_tokens` 参数,以在特定数量的新标记处停止输出。
                                    请注意,根据提示,模型可以生成较少的标记。
                                    这将隐含地将可能的提示标记数量设置为模型的最大输入长度减去 `max_new_tokens`,
                                    并且输入将相应地被截断。

                #### 水印参数:

                - gamma:每次生成步骤将词汇表分成绿色列表的部分。较小的 gamma 值通过使得有水印的模型能够更好地与人类/无水印文本区分,
                          从而创建了更强的水印,因为它会更倾向于从较小的绿色集合中进行采样,使得这些标记不太可能是偶然发生的。
                - delta:在每个生成步骤中,在采样/选择下一个标记之前,为绿色列表中的每个标记的对数概率添加正偏差。
                          较高的 delta 值意味着绿色列表标记更受有水印的模型青睐,并且随着偏差的增大,水印从“软性”过渡到“硬性”。
                          对于硬性水印,几乎所有的标记都是绿色的,但这可能对生成质量产生不利影响,特别是当分布的灵活性有限时。

                #### 检测器参数:

                - z-score 阈值:假设检验的 z-score 截断值。较高的阈值(例如 4.0)使得预测人类/无水印文本是有水印的
                                  (_false positives_)的可能性非常低,因为一个真正的包含大量标记的人类文本几乎不可能达到那么高的 z-score。
                                  较低的阈值将捕捉更多的真正有水印的文本,因为一些有水印的文本可能包含较少的绿色标记并获得较低的 z-score,
                                  但仍然通过较低的门槛被标记为“有水印”。然而,较低的阈值会增加被错误地标记为有水印的具有略高于平均绿色标记数的人类文本的几率。
                                  4.0-5.0 提供了极低的误报率,同时仍然准确地捕捉到大多数有水印的文本。
                - 忽略重复的双字母组合:此备用检测算法在检测期间只考虑文本中的唯一双字母组合,
                                          根据每对中的第一个计算绿色列表,并检查第二个是否在列表内。
                                          这意味着 `T` 现在是文本中唯一的双字母组合的数量,
                                          如果文本包含大量重复,那么它将少于生成的总标记数。
                                          有关更详细的讨论,请参阅论文。
                - 标准化:我们实现了一些基本的标准化,以防止文本在检测过程中受到各种对抗性扰动。
                          目前,我们支持将所有字符转换为 Unicode,使用规范形式替换同形字符,并标准化大小写。
                """
            )


        # Register main generation tab click, outputing generations as well as a the encoded+redecoded+potentially truncated prompt and flag, then call detection
        generate_btn.click(fn=check_prompt_partial, inputs=[prompt, session_args, session_tokenizer],
                           outputs=[redecoded_input, truncation_warning, session_args]).success(
            fn=generate_partial, inputs=[redecoded_input, session_args, session_tokenizer],
            outputs=[output_without_watermark, output_with_watermark]).success(
            fn=detect_partial, inputs=[output_without_watermark, session_args, session_tokenizer],
            outputs=[without_watermark_detection_result, session_args, session_tokenizer,
                     html_without_watermark]).success(
            fn=detect_partial, inputs=[output_with_watermark, session_args, session_tokenizer],
            outputs=[with_watermark_detection_result, session_args, session_tokenizer, html_with_watermark])
        # Show truncated version of prompt if truncation occurred
        redecoded_input.change(fn=truncate_prompt, inputs=[redecoded_input, truncation_warning, prompt, session_args],
                               outputs=[prompt, session_args])
        # Register main detection tab click
        detect_btn.click(fn=detect_partial, inputs=[detection_input, session_args, session_tokenizer],
                         outputs=[detection_result, session_args, session_tokenizer, html_detection_input],
                         api_name="detection")

        # State management logic
        # define update callbacks that change the state dict
        def update_model(session_state, value):
            session_state.model_name_or_path = value; return session_state

        def update_sampling_temp(session_state, value):
            session_state.sampling_temp = float(value); return session_state

        def update_generation_seed(session_state, value):
            session_state.generation_seed = int(value); return session_state

        def update_gamma(session_state, value):
            session_state.gamma = float(value); return session_state

        def update_delta(session_state, value):
            session_state.delta = float(value); return session_state

        def update_detection_z_threshold(session_state, value):
            session_state.detection_z_threshold = float(value); return session_state

        def update_decoding(session_state, value):
            if value == "multinomial":
                session_state.use_sampling = True
            elif value == "greedy":
                session_state.use_sampling = False
            return session_state

        def toggle_sampling_vis(value):
            if value == "multinomial":
                return gr.update(visible=True)
            elif value == "greedy":
                return gr.update(visible=False)

        def toggle_sampling_vis_inv(value):
            if value == "multinomial":
                return gr.update(visible=False)
            elif value == "greedy":
                return gr.update(visible=True)

        # if model name is in the list of api models, set the num beams parameter to 1 and hide n_beams
        def toggle_vis_for_api_model(value):
            if value in API_MODEL_MAP:
                return gr.update(visible=False)
            else:
                return gr.update(visible=True)

        def toggle_beams_for_api_model(value, orig_n_beams):
            if value in API_MODEL_MAP:
                return gr.update(value=1)
            else:
                return gr.update(value=orig_n_beams)

        # if model name is in the list of api models, set the interactive parameter to false
        def toggle_interactive_for_api_model(value):
            if value in API_MODEL_MAP:
                return gr.update(interactive=False)
            else:
                return gr.update(interactive=True)

        # if model name is in the list of api models, set gamma and delta based on API map
        def toggle_gamma_for_api_model(value, orig_gamma):
            if value in API_MODEL_MAP:
                return gr.update(value=API_MODEL_MAP[value]["gamma"])
            else:
                return gr.update(value=orig_gamma)

        def toggle_delta_for_api_model(value, orig_delta):
            if value in API_MODEL_MAP:
                return gr.update(value=API_MODEL_MAP[value]["delta"])
            else:
                return gr.update(value=orig_delta)

        def update_n_beams(session_state, value):
            session_state.n_beams = int(value); return session_state

        def update_max_new_tokens(session_state, value):
            session_state.max_new_tokens = int(value); return session_state

        def update_ignore_repeated_bigrams(session_state, value):
            session_state.ignore_repeated_bigrams = value; return session_state

        def update_normalizers(session_state, value):
            session_state.normalizers = value; return session_state

        def update_seed_separately(session_state, value):
            session_state.seed_separately = value; return session_state

        def update_select_green_tokens(session_state, value):
            session_state.select_green_tokens = value; return session_state

        def update_tokenizer(model_name_or_path):
            # if model_name_or_path == ALPACA_MODEL_NAME:
            #     return ALPACA_MODEL_TOKENIZER.from_pretrained(ALPACA_TOKENIZER_PATH)
            # else:
            return AutoTokenizer.from_pretrained(model_name_or_path)

        def check_model(value):
            return value if (value != "" and value is not None) else args.model_name_or_path

        # enforce constraint that model cannot be null or empty
        # then attach model callbacks in particular
        model_selector.change(check_model, inputs=[model_selector], outputs=[model_selector]).then(
            toggle_vis_for_api_model, inputs=[model_selector], outputs=[n_beams]
        ).then(
            toggle_beams_for_api_model, inputs=[model_selector, n_beams], outputs=[n_beams]
        ).then(
            toggle_interactive_for_api_model, inputs=[model_selector], outputs=[gamma]
        ).then(
            toggle_interactive_for_api_model, inputs=[model_selector], outputs=[delta]
        ).then(
            toggle_gamma_for_api_model, inputs=[model_selector, gamma], outputs=[gamma]
        ).then(
            toggle_delta_for_api_model, inputs=[model_selector, delta], outputs=[delta]
        ).then(
            update_tokenizer, inputs=[model_selector], outputs=[session_tokenizer]
        ).then(
            update_model, inputs=[session_args, model_selector], outputs=[session_args]
        ).then(
            lambda value: str(value), inputs=[session_args], outputs=[current_parameters]
        )
        # registering callbacks for toggling the visibilty of certain parameters based on the values of others
        decoding.change(toggle_sampling_vis, inputs=[decoding], outputs=[sampling_temp])
        decoding.change(toggle_sampling_vis, inputs=[decoding], outputs=[generation_seed])
        decoding.change(toggle_sampling_vis_inv, inputs=[decoding], outputs=[n_beams])
        decoding.change(toggle_vis_for_api_model, inputs=[model_selector], outputs=[n_beams])
        # registering all state update callbacks
        decoding.change(update_decoding, inputs=[session_args, decoding], outputs=[session_args])
        sampling_temp.change(update_sampling_temp, inputs=[session_args, sampling_temp], outputs=[session_args])
        generation_seed.change(update_generation_seed, inputs=[session_args, generation_seed], outputs=[session_args])
        n_beams.change(update_n_beams, inputs=[session_args, n_beams], outputs=[session_args])
        max_new_tokens.change(update_max_new_tokens, inputs=[session_args, max_new_tokens], outputs=[session_args])
        gamma.change(update_gamma, inputs=[session_args, gamma], outputs=[session_args])
        delta.change(update_delta, inputs=[session_args, delta], outputs=[session_args])
        detection_z_threshold.change(update_detection_z_threshold, inputs=[session_args, detection_z_threshold],
                                     outputs=[session_args])
        ignore_repeated_bigrams.change(update_ignore_repeated_bigrams, inputs=[session_args, ignore_repeated_bigrams],
                                       outputs=[session_args])
        normalizers.change(update_normalizers, inputs=[session_args, normalizers], outputs=[session_args])
        seed_separately.change(update_seed_separately, inputs=[session_args, seed_separately], outputs=[session_args])
        select_green_tokens.change(update_select_green_tokens, inputs=[session_args, select_green_tokens],
                                   outputs=[session_args])
        # register additional callback on button clicks that updates the shown parameters window
        generate_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        detect_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        # When the parameters change, display the update and also fire detection, since some detection params dont change the model output.
        delta.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        gamma.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        gamma.change(fn=detect_partial, inputs=[output_without_watermark, session_args, session_tokenizer],
                     outputs=[without_watermark_detection_result, session_args, session_tokenizer,
                              html_without_watermark])
        gamma.change(fn=detect_partial, inputs=[output_with_watermark, session_args, session_tokenizer],
                     outputs=[with_watermark_detection_result, session_args, session_tokenizer, html_with_watermark])
        gamma.change(fn=detect_partial, inputs=[detection_input, session_args, session_tokenizer],
                     outputs=[detection_result, session_args, session_tokenizer, html_detection_input])
        detection_z_threshold.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        detection_z_threshold.change(fn=detect_partial,
                                     inputs=[output_without_watermark, session_args, session_tokenizer],
                                     outputs=[without_watermark_detection_result, session_args, session_tokenizer,
                                              html_without_watermark])
        detection_z_threshold.change(fn=detect_partial, inputs=[output_with_watermark, session_args, session_tokenizer],
                                     outputs=[with_watermark_detection_result, session_args, session_tokenizer,
                                              html_with_watermark])
        detection_z_threshold.change(fn=detect_partial, inputs=[detection_input, session_args, session_tokenizer],
                                     outputs=[detection_result, session_args, session_tokenizer, html_detection_input])
        ignore_repeated_bigrams.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        ignore_repeated_bigrams.change(fn=detect_partial,
                                       inputs=[output_without_watermark, session_args, session_tokenizer],
                                       outputs=[without_watermark_detection_result, session_args, session_tokenizer,
                                                html_without_watermark])
        ignore_repeated_bigrams.change(fn=detect_partial,
                                       inputs=[output_with_watermark, session_args, session_tokenizer],
                                       outputs=[with_watermark_detection_result, session_args, session_tokenizer,
                                                html_with_watermark])
        ignore_repeated_bigrams.change(fn=detect_partial, inputs=[detection_input, session_args, session_tokenizer],
                                       outputs=[detection_result, session_args, session_tokenizer,
                                                html_detection_input])
        normalizers.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        normalizers.change(fn=detect_partial, inputs=[output_without_watermark, session_args, session_tokenizer],
                           outputs=[without_watermark_detection_result, session_args, session_tokenizer,
                                    html_without_watermark])
        normalizers.change(fn=detect_partial, inputs=[output_with_watermark, session_args, session_tokenizer],
                           outputs=[with_watermark_detection_result, session_args, session_tokenizer,
                                    html_with_watermark])
        normalizers.change(fn=detect_partial, inputs=[detection_input, session_args, session_tokenizer],
                           outputs=[detection_result, session_args, session_tokenizer, html_detection_input])
        select_green_tokens.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        select_green_tokens.change(fn=detect_partial,
                                   inputs=[output_without_watermark, session_args, session_tokenizer],
                                   outputs=[without_watermark_detection_result, session_args, session_tokenizer,
                                            html_without_watermark])
        select_green_tokens.change(fn=detect_partial, inputs=[output_with_watermark, session_args, session_tokenizer],
                                   outputs=[with_watermark_detection_result, session_args, session_tokenizer,
                                            html_with_watermark])
        select_green_tokens.change(fn=detect_partial, inputs=[detection_input, session_args, session_tokenizer],
                                   outputs=[detection_result, session_args, session_tokenizer, html_detection_input])

    demo.queue(concurrency_count=3)

    if args.demo_public:
        demo.launch(share=True)  # exposes app to the internet via randomly generated link
    else:
        demo.launch()


def main(args):
    """Run a command line version of the generation and detection operations
        and optionally launch and serve the gradio demo"""
    # Initial arg processing and log
    args.normalizers = (args.normalizers.split(",") if args.normalizers else [])
    print(args)

    if not args.skip_model_load:
        model, tokenizer, device = load_model(args)
    else:
        model, tokenizer, device = None, None, None
        tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
        if args.use_gpu:
            device = "cuda" if torch.cuda.is_available() else "cpu"
        else:
            device = "cpu"

    # terrapin example
    input_text = (
        "The diamondback terrapin or simply terrapin (Malaclemys terrapin) is a "
        "species of turtle native to the brackish coastal tidal marshes of the "
        "Northeastern and southern United States, and in Bermuda.[6] It belongs "
        "to the monotypic genus Malaclemys. It has one of the largest ranges of "
        "all turtles in North America, stretching as far south as the Florida Keys "
        "and as far north as Cape Cod.[7] The name 'terrapin' is derived from the "
        "Algonquian word torope.[8] It applies to Malaclemys terrapin in both "
        "British English and American English. The name originally was used by "
        "early European settlers in North America to describe these brackish-water "
        "turtles that inhabited neither freshwater habitats nor the sea. It retains "
        "this primary meaning in American English.[8] In British English, however, "
        "other semi-aquatic turtle species, such as the red-eared slider, might "
        "also be called terrapins. The common name refers to the diamond pattern "
        "on top of its shell (carapace), but the overall pattern and coloration "
        "vary greatly. The shell is usually wider at the back than in the front, "
        "and from above it appears wedge-shaped. The shell coloring can vary "
        "from brown to grey, and its body color can be grey, brown, yellow, "
        "or white. All have a unique pattern of wiggly, black markings or spots "
        "on their body and head. The diamondback terrapin has large webbed "
        "feet.[9] The species is"
    )

    args.default_prompt = input_text

    # Generate and detect, report to stdout
    if not args.skip_model_load:

        term_width = 80
        print("#" * term_width)
        print("Prompt:")
        print(input_text)

        # a generator that yields (without_watermark, with_watermark) pairs
        generator_outputs = generate(input_text,
                                     args,
                                     model=model,
                                     device=device,
                                     tokenizer=tokenizer)
        # we need to iterate over it,
        # but we only want the last output in this case
        for out in generator_outputs:
            decoded_output_without_watermark = out[0]
            decoded_output_with_watermark = out[1]

        without_watermark_detection_result = detect(decoded_output_without_watermark,
                                                    args,
                                                    device=device,
                                                    tokenizer=tokenizer,
                                                    return_green_token_mask=False)
        with_watermark_detection_result = detect(decoded_output_with_watermark,
                                                 args,
                                                 device=device,
                                                 tokenizer=tokenizer,
                                                 return_green_token_mask=False)

        print("#" * term_width)
        print("Output without watermark:")
        print(decoded_output_without_watermark)
        print("-" * term_width)
        print(f"Detection result @ {args.detection_z_threshold}:")
        pprint(without_watermark_detection_result)
        print("-" * term_width)

        print("#" * term_width)
        print("Output with watermark:")
        print(decoded_output_with_watermark)
        print("-" * term_width)
        print(f"Detection result @ {args.detection_z_threshold}:")
        pprint(with_watermark_detection_result)
        print("-" * term_width)

    # Launch the app to generate and detect interactively (implements the hf space demo)
    if args.run_gradio:
        run_gradio(args, model=model, tokenizer=tokenizer, device=device)

    return


if __name__ == "__main__":
    args = parse_args()
    print(args)

    main(args)