from PIL import Image, ImageDraw, ImageFont import cv2 import numpy as np from transformers import AutoTokenizer, PaliGemmaForConditionalGeneration, PaliGemmaProcessor import torch import spaces import gradio as gr import jax import jax.numpy as jnp # Load PaliGemma device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_id = "google/paligemma-3b-mix-224" model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device) processor = PaliGemmaProcessor.from_pretrained(model_id) # Function to draw bounding boxes (your original code) def draw_bounding_box(draw, coordinates, label, width, height): y1, x1, y2, x2 = coordinates y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width)) text_width, text_height = draw.textsize(label) draw.rectangle([(x1, y1 - text_height - 2), (x1 + text_width + 4, y1)], fill="red") # Draw label text draw.text((x1 + 2, y1 - text_height - 2), label, fill="white") # Draw bounding box draw.rectangle([(x1, y1), (x2, y2)], outline="red", width=2) @spaces.GPU def process_video(video_path, input_text): cap = cv2.VideoCapture(video_path) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('output_paligemma_keras.avi', fourcc, 20.0, (int(cap.get(3)), int(cap.get(4)))) while(True): ret, frame = cap.read() if not ret: break # Convert the frame to a PIL Image img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) # Send text prompt and image as input. inputs = processor(text=input_text, images=img, padding="longest", do_convert_rgb=True, return_tensors="pt").to("cuda") inputs = inputs.to(dtype=model.dtype) # Get output. with torch.no_grad(): output = model.generate(**inputs, max_length=496) paligemma_response = processor.decode(output[0], skip_special_tokens=True)[len(input_text):].lstrip("\n") # print(paligemma_response) # For debugging detections = paligemma_response.split(" ; ") # Parse the output bounding box coordinates parsed_coordinates = [] labels = [] for item in detections: # Remove '' tags and split the string # print(item) detection = item.replace("= 2: coordinates_str = detection[0] label = detection[1] labels.append(label) else: # No label detected, skip the iteration. continue # Split the coordinates string by '>' to get individual coordinates coordinates = coordinates_str.split(">") coordinates = coordinates[:4] # Slicing to ensure only 4 values if coordinates[-1] == '': coordinates = coordinates[:-1] # print(coordinates) coordinates = [int(coord)/1024 for coord in coordinates] # location_values = [int(loc) for loc in re.findall(r'\d{4}', coordinates)] # y1, x1, y2, x2 = [value / 1024 for value in location_values] parsed_coordinates.append(coordinates) width = img.size[0] height = img.size[1] # Draw bounding boxes on the frame using PIL draw = ImageDraw.Draw(img) for coordinates, label in zip(parsed_coordinates, labels): draw_bounding_box(draw, coordinates, label, width=width, height=height) # Convert the PIL Image back to OpenCV format frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) # Write the frame to the output video out.write(frame) cap.release() out.release() return "output_paligemma_keras.avi" with gr.Blocks() as demo: gr.Markdown("## Zero-shot Object Tracking with PaliGemma") gr.Markdown("This is a demo for zero-shot object tracking using [PaliGemma](https://huggingface.co/google/paligemma-3b-mix-448) vision language model by Google.") gr.Markdown("Simply upload a video and enter the candidate labels, or try the example below. Text input should be ; separated. 👇") with gr.Tab(label="Video"): with gr.Row(): input_video = gr.Video(label='Input Video') output_video = gr.Video(label='Output Video') with gr.Row(): candidate_labels = gr.Textbox( label='Labels', placeholder='Labels separated by a comma', ) submit = gr.Button() gr.Examples( fn=process_video, examples=[["./input.mp4", "detect person"]], inputs=[ input_video, candidate_labels, ], outputs=output_video ) submit.click(fn=process_video, inputs=[input_video, candidate_labels], outputs=output_video ) demo.launch(debug=False, show_error=True)