Spaces:
Runtime error
Runtime error
from PIL import Image, ImageDraw, ImageFont | |
import cv2 | |
import numpy as np | |
from transformers import AutoTokenizer, PaliGemmaForConditionalGeneration, PaliGemmaProcessor | |
import torch | |
import spaces | |
import gradio as gr | |
# Load PaliGemma | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_id = "google/paligemma-3b-mix-224" | |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device) | |
processor = PaliGemmaProcessor.from_pretrained(model_id) | |
# Function to draw bounding boxes (your original code) | |
def draw_bounding_box(draw, coordinates, label, width, height): | |
y1, x1, y2, x2 = coordinates | |
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width)) | |
text_width, text_height = draw.textsize(label) | |
draw.rectangle([(x1, y1 - text_height - 2), (x1 + text_width + 4, y1)], fill="red") | |
# Draw label text | |
draw.text((x1 + 2, y1 - text_height - 2), label, fill="white") | |
# Draw bounding box | |
draw.rectangle([(x1, y1), (x2, y2)], outline="red", width=2) | |
def process_video(video_path, input_text): | |
cap = cv2.VideoCapture(video_path) | |
fourcc = cv2.VideoWriter_fourcc(*'XVID') | |
out = cv2.VideoWriter('output_paligemma_keras.avi', fourcc, 20.0, (int(cap.get(3)), int(cap.get(4)))) | |
while(True): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# Convert the frame to a PIL Image | |
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
# Send text prompt and image as input. | |
inputs = processor(text=input_text, images=img, | |
padding="longest", do_convert_rgb=True, return_tensors="pt").to("cuda") | |
inputs = inputs.to(dtype=model.dtype) | |
# Get output. | |
with torch.no_grad(): | |
output = model.generate(**inputs, max_length=496) | |
paligemma_response = processor.decode(output[0], skip_special_tokens=True)[len(input_text):].lstrip("\n") | |
# print(paligemma_response) # For debugging | |
detections = paligemma_response.split(" ; ") | |
# Parse the output bounding box coordinates | |
parsed_coordinates = [] | |
labels = [] | |
for item in detections: | |
# Remove '<loc>' tags and split the string | |
# print(item) | |
detection = item.replace("<loc", "").split() | |
if len(detection) >= 2: | |
coordinates_str = detection[0] | |
label = detection[1] | |
labels.append(label) | |
else: | |
# No label detected, skip the iteration. | |
continue | |
# Split the coordinates string by '>' to get individual coordinates | |
coordinates = coordinates_str.split(">") | |
coordinates = coordinates[:4] # Slicing to ensure only 4 values | |
if coordinates[-1] == '': | |
coordinates = coordinates[:-1] | |
# print(coordinates) | |
coordinates = [int(coord)/1024 for coord in coordinates] | |
# location_values = [int(loc) for loc in re.findall(r'\d{4}', coordinates)] | |
# y1, x1, y2, x2 = [value / 1024 for value in location_values] | |
parsed_coordinates.append(coordinates) | |
width = img.size[0] | |
height = img.size[1] | |
# Draw bounding boxes on the frame using PIL | |
draw = ImageDraw.Draw(img) | |
for coordinates, label in zip(parsed_coordinates, labels): | |
draw_bounding_box(draw, coordinates, label, width=width, height=height) | |
# Convert the PIL Image back to OpenCV format | |
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
# Write the frame to the output video | |
out.write(frame) | |
cap.release() | |
out.release() | |
return "output_paligemma_keras.avi" | |
with gr.Blocks() as demo: | |
gr.Markdown("## Zero-shot Object Tracking with PaliGemma") | |
gr.Markdown("This is a demo for zero-shot object tracking using [PaliGemma](https://huggingface.co/google/paligemma-3b-mix-448) vision language model by Google.") | |
gr.Markdown("Simply upload a video and enter the candidate labels, or try the example below. Text input should be ; separated. π") | |
with gr.Tab(label="Video"): | |
with gr.Row(): | |
input_video = gr.Video(label='Input Video') | |
output_video = gr.Video(label='Output Video') | |
with gr.Row(): | |
candidate_labels = gr.Textbox( | |
label='Labels', | |
placeholder='Labels separated by a comma', | |
) | |
submit = gr.Button() | |
gr.Examples( | |
fn=process_video, | |
examples=[["./input.mp4", "detect person"]], | |
inputs=[ | |
input_video, | |
candidate_labels, | |
], | |
outputs=output_video | |
) | |
submit.click(fn=process_video, | |
inputs=[input_video, candidate_labels], | |
outputs=output_video | |
) | |
demo.launch(debug=False, show_error=True) |