NSTiwari's picture
Update app.py
8602ffd verified
from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np
from transformers import AutoTokenizer, PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import torch
import spaces
import gradio as gr
# Load PaliGemma
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "google/paligemma-3b-mix-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
processor = PaliGemmaProcessor.from_pretrained(model_id)
# Function to draw bounding boxes (your original code)
def draw_bounding_box(draw, coordinates, label, width, height):
y1, x1, y2, x2 = coordinates
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
text_width, text_height = draw.textsize(label)
draw.rectangle([(x1, y1 - text_height - 2), (x1 + text_width + 4, y1)], fill="red")
# Draw label text
draw.text((x1 + 2, y1 - text_height - 2), label, fill="white")
# Draw bounding box
draw.rectangle([(x1, y1), (x2, y2)], outline="red", width=2)
@spaces.GPU
def process_video(video_path, input_text):
cap = cv2.VideoCapture(video_path)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output_paligemma_keras.avi', fourcc, 20.0, (int(cap.get(3)), int(cap.get(4))))
while(True):
ret, frame = cap.read()
if not ret:
break
# Convert the frame to a PIL Image
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Send text prompt and image as input.
inputs = processor(text=input_text, images=img,
padding="longest", do_convert_rgb=True, return_tensors="pt").to("cuda")
inputs = inputs.to(dtype=model.dtype)
# Get output.
with torch.no_grad():
output = model.generate(**inputs, max_length=496)
paligemma_response = processor.decode(output[0], skip_special_tokens=True)[len(input_text):].lstrip("\n")
# print(paligemma_response) # For debugging
detections = paligemma_response.split(" ; ")
# Parse the output bounding box coordinates
parsed_coordinates = []
labels = []
for item in detections:
# Remove '<loc>' tags and split the string
# print(item)
detection = item.replace("<loc", "").split()
if len(detection) >= 2:
coordinates_str = detection[0]
label = detection[1]
labels.append(label)
else:
# No label detected, skip the iteration.
continue
# Split the coordinates string by '>' to get individual coordinates
coordinates = coordinates_str.split(">")
coordinates = coordinates[:4] # Slicing to ensure only 4 values
if coordinates[-1] == '':
coordinates = coordinates[:-1]
# print(coordinates)
coordinates = [int(coord)/1024 for coord in coordinates]
# location_values = [int(loc) for loc in re.findall(r'\d{4}', coordinates)]
# y1, x1, y2, x2 = [value / 1024 for value in location_values]
parsed_coordinates.append(coordinates)
width = img.size[0]
height = img.size[1]
# Draw bounding boxes on the frame using PIL
draw = ImageDraw.Draw(img)
for coordinates, label in zip(parsed_coordinates, labels):
draw_bounding_box(draw, coordinates, label, width=width, height=height)
# Convert the PIL Image back to OpenCV format
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Write the frame to the output video
out.write(frame)
cap.release()
out.release()
return "output_paligemma_keras.avi"
with gr.Blocks() as demo:
gr.Markdown("## Zero-shot Object Tracking with PaliGemma")
gr.Markdown("This is a demo for zero-shot object tracking using [PaliGemma](https://huggingface.co/google/paligemma-3b-mix-448) vision language model by Google.")
gr.Markdown("Simply upload a video and enter the candidate labels, or try the example below. Text input should be ; separated. πŸ‘‡")
with gr.Tab(label="Video"):
with gr.Row():
input_video = gr.Video(label='Input Video')
output_video = gr.Video(label='Output Video')
with gr.Row():
candidate_labels = gr.Textbox(
label='Labels',
placeholder='Labels separated by a comma',
)
submit = gr.Button()
gr.Examples(
fn=process_video,
examples=[["./input.mp4", "detect person"]],
inputs=[
input_video,
candidate_labels,
],
outputs=output_video
)
submit.click(fn=process_video,
inputs=[input_video, candidate_labels],
outputs=output_video
)
demo.launch(debug=False, show_error=True)