Spaces:
Running
Running
File size: 12,074 Bytes
c2ba4d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
from copy import deepcopy
from functools import partial
from typing import *
import pandas as pd
from fire import Fire
"""
This code assumes dealing with only one instruction
"""
# from varco_arena.tournament
def log2_power_of_two(n):
# First, let's make sure n is indeed a power of 2
if n & (n - 1) != 0 or n == 0:
raise ValueError("n must be a positive power of 2")
exponent = 0
while n > 1:
n >>= 1 # Right shift is like dividing by 2, but faster
exponent += 1
return exponent
def get_1st(df: pd.DataFrame, alpha2names: dict) -> Optional[str]:
finals = df[df["round"] == "final"]
if len(finals) == 1:
first = finals.iloc[0].winner_resolved
else:
first = (
None # error case (no finals match or multiple finals (buggy result file))
)
return first
def get_unique_participants(df: pd.DataFrame) -> list:
participants = pd.concat([df.model_a, df.model_b]).unique().tolist()
participants = [p for p in participants if p] # remove None
participants = sorted(participants) # make it sorted
return participants
def _impute_byes(df):
max_depth = df.depth.max()
# init
imputed_parts = dict()
for depth in range(max_depth + 1):
imputed_parts[depth] = df[df.depth == depth].copy()
# reverse
for depth in range(max_depth, 0, -1): # always we have 1 proper match for depth=0
null_v_null = {
"model_a": "",
"model_b": "",
"winner": "model_a",
"match_order_in_round": "-",
"depth": depth,
}
# fill some_model vs null byes
players = get_unique_participants(imputed_parts[depth])
proceeded = get_unique_participants(imputed_parts[depth - 1])
imputed = []
for p in proceeded:
if p not in players:
p_v_null = deepcopy(null_v_null)
p_v_null["model_a"] = p
imputed.append(p_v_null)
imputed_parts[depth] = pd.concat(
[
imputed_parts[depth],
pd.DataFrame(imputed),
],
axis="index",
)
# fill null vs null
n_null_v_null = 2 ** (depth) - len(imputed_parts[depth])
if n_null_v_null > 0:
imputed = pd.DataFrame([null_v_null] * n_null_v_null)
imputed_parts[depth] = pd.concat(
[
imputed_parts[depth],
imputed,
],
axis="index",
)
df_imputed = pd.concat(imputed_parts.values(), axis="index")
df_imputed = df_imputed.sort_values(by="depth").reset_index(drop=True)
return df_imputed
def index_test_scenario(df) -> pd.DataFrame:
df["inst_src"] = "inst: " + df.instruction + "\n\nsrc: " + df.source
df["idx_inst_src"] = df.apply(
lambda row: f"{row.tournament_idx}:\n{row.inst_src}", axis=1
)
# later used for tournament bracket backtrackiung
if "depth" not in df.columns:
mappings = {
"final": 0,
"semi-final": 1,
"quarter-final": 2,
}
def _convert_round_to_depth(rnd: str, mappings=None) -> int:
if rnd is None:
depth = None
elif rnd in mappings.keys():
depth = mappings[rnd]
elif rnd.startswith("round-"): # assume perfect power of two
num = int(rnd.replace("round-", "").strip())
depth = log2_power_of_two(num) - 1
return depth
conv = partial(_convert_round_to_depth, mappings=mappings)
df["depth"] = df["round"].apply(conv)
return df
def init_tournament_dataframe(df, alpha2names: dict = None) -> pd.DataFrame:
df = df.sort_values(by="depth").reset_index(drop=True)
# make winner interpretable (A -> model_a, B -> model_b)
df.winner = df.winner.apply(lambda txt: f"model_{txt.lower()}")
# define alpha2names if not given (covers upto 168 participants)
if alpha2names is None:
alphabets = "ABCDEFGHIJKLMNOPQRSTUVWXYZ\
abcdefghijklmnopqrstuvwxyz\
ⓐⓑⓒⓓⓔⓕⓖⓗⓘⓙⓚⓛⓜⓝⓞⓟⓠⓡⓢⓣⓤⓥⓦⓧⓨⓩ\
㉠㉡㉢㉣㉤㉥㉦㉧㉨㉩㉪㉫㉬㉭\
㉮㉯㉰㉱㉲㉳㉴㉵㉶㉷㉸㉹㉺㉻\
ㄱㄴㄷㄹㅁㅂㅅㅇㅈㅊㅋㅌㅍㅎ\
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ\
αβγδεζηθικλμνξοπρστυφχψω"
model_full_names = get_unique_participants(df)
alpha2names = dict(zip(alphabets, model_full_names))
if len(alpha2names) < len(model_full_names):
raise ValueError(
f"Tournament viewer cannot visualize more than {len(alphabets)=} participants. ({len(model_full_names)=} is given)\n\nOther features will not be affected but the tournament visualizer."
)
names2alpha = dict(zip(alpha2names.values(), alpha2names.keys()))
df = _impute_byes(df)
# preserve readables for later
df = _make_readables(df, names2alpha)
if len(df[df["round"] == "final"]) != 1:
raise ValueError(f"final match need to be one and only.")
return df, alpha2names
def _make_readables(df, names2alpha):
df["human_readable_model_a"] = df.model_a.copy()
df["human_readable_model_b"] = df.model_b.copy()
df.model_a = df.model_a.apply(
lambda modelname: names2alpha[modelname] if modelname else "x"
)
df.model_b = df.model_b.apply(
lambda modelname: names2alpha[modelname] if modelname else "x"
)
df["human_readable_idx"] = df.apply(
lambda row: f"{row.name}: {row.human_readable_model_a} ({row.model_a}) vs. {row.human_readable_model_b} ({row.model_b if row.model_b else 'x'})",
axis=1,
)
df["winner_resolved"] = df.apply(lambda row: row[row.winner], axis=1)
df["winner_nodes"] = df.apply(
lambda row: f"{row.winner_resolved}:{row.name}".ljust(4, " "), axis=1
) # later for figure representation of winner as a "node"
return df
# draw
def draw(df: pd.DataFrame, alpha2names: dict = None) -> str:
def _draw_round(
df: pd.DataFrame,
depth: int = None,
winners_in_order: list = None,
) -> Tuple:
df_now = df[df.depth == depth]
max_depth = df.depth.max()
width = 2 ** ((max_depth - depth) + 2)
connect_left = "─" * (width)
connect_left = connect_left[4:]
connect_right = " " * (width)
connect_right = "┐" + connect_right[1:]
if winners_in_order is None:
assert (
depth == 0
), f"{winners_in_order=} is only allowed when drawing the top (=final match)"
winners_in_order = df_now.winner_nodes
round_drawing_parts = []
descending_round_winners = []
for node in winners_in_order:
round_drawing_parts.append("".join([node, connect_left, connect_right]))
# next round winners in sync with winner order
row_now = df_now.query(f"winner_nodes=='{node}'")
descending_round_winners.append(row_now.model_a.item())
descending_round_winners.append(row_now.model_b.item())
# find descending_round_winners within winner_nodes format (num:alpha)
if depth == max_depth:
pass # keep the descending_round_winners intact
else:
df_descend = df[df.depth == depth + 1]
for i, winner_alpha in enumerate(descending_round_winners):
node_intr = df_descend.query(
f"winner_resolved=='{winner_alpha}'"
).winner_nodes.item()
descending_round_winners[i] = node_intr
round_drawing = "".join(round_drawing_parts)
descending_unit = " " * width
descending_unit = "│" + descending_unit[1:]
descending_lines_parts = [descending_unit] * len(df_now) * 2
descending_lines = "".join(descending_lines_parts)
return round_drawing, descending_lines, descending_round_winners
drawings = []
winners_in_order = None
max_depth = df.depth.max()
for depth in range(max_depth + 1):
max_depth = df.depth.max()
winner_drw, lines_desc, winners_in_order = _draw_round(
df,
depth=depth,
winners_in_order=winners_in_order,
)
drawings.append((winner_drw, lines_desc))
# prepare bracket top
champion_alphabet = drawings[0][0].split()[0].split(":")[0]
champion_readable = alpha2names[champion_alphabet]
bracket_top = [f"🥇winner: {champion_readable}", "│"]
# prepare mid
bracket_mid = "\n".join(["\n".join(tup) for tup in drawings])
# prepare bot
initial_participants = winners_in_order
bracket_bot = (" " * 3).join(initial_participants)
full_figure = "\n".join(bracket_top + [bracket_mid, bracket_bot])
return full_figure
def number_breakdown_from_df(result_df: pd.DataFrame) -> str:
n_models = len(get_unique_participants(result_df))
size_testset = int(len(result_df) / (n_models - 1))
interpretation = f"total {len(result_df)} matches = (n_models-1) * size_testset = ({n_models}-1) * {size_testset}"
return interpretation, n_models, size_testset
def make_legend_str(df, alpha2names) -> str:
first = get_1st(df, alpha2names)
alpha2names = {k: v.replace("🥇 ", "") for k, v in alpha2names.items()}
alpha_ordered = sorted(list(alpha2names.keys()))
# names_ordered = sorted(list(alpha2names.values()))
# name2alpha = {v: k for k, v in alpha2names.items()}
for k, v in alpha2names.items():
if v == alpha2names[first]:
alpha2names[k] = f"🥇 {v}"
res_str = f"\n\nlegend:"
# for name in names_ordered:
# alpha = name2alpha[name]
for alpha in alpha_ordered:
name_w_medal = alpha2names[alpha]
res_str += f"\n{alpha}\t{name_w_medal}"
return res_str
def main(
jslname: str = "result.json",
):
"""
테스트 코드
"""
df = pd.read_json(jslname, orient="records")
df = df.drop(columns=["tstamp", "logs"])
df = index_test_scenario(df)
# 중간에 visualization(df) 여기선 생략. 만약 이거 뺴고 다 따라했는데 문제가 생긴다면 viz 문제다. 근데 안그럴거같긴함
selections = df.idx_inst_src.unique()
for i, sel in enumerate(selections):
try:
df_now = df[df.idx_inst_src == sel]
df_now_processed, _alpha2names = init_tournament_dataframe(
df_now, alpha2names=alpha2names if "alpha2names" in dir() else None
)
if "alpha2names" not in dir():
alpha2names = _alpha2names
assert "alpha2names" in dir()
bracket_drawing = draw(df_now_processed, alpha2names=alpha2names)
legend = make_legend_str(df_now_processed, alpha2names)
print(bracket_drawing + legend)
print(bracket_drawing + legend, file=open(f"{i}.txt", "w"))
print(f"\n\n{sel}", file=open(f"{i}.txt", "a"))
for match_idx_human in df_now_processed.human_readable_idx:
match_idx = int(match_idx_human.split(": ")[0])
row = df_now_processed.loc[match_idx]
winner = row.winner
except Exception as e:
print(e, file=open(f"{i}_err.txt", "w"))
print("", file=open(f"{i}_err.txt", "a"))
print(sel, file=open(f"{i}_err.txt", "a"))
df_now_processed[
[
"depth",
"round",
"winner_nodes",
"winner_resolved",
"winner",
"model_a",
"model_b",
]
].to_json(f"{i}_err.jsonl", lines=True, orient="records")
if __name__ == "__main__":
Fire(main)
|