Spaces:
Running
Running
File size: 17,492 Bytes
c2ba4d5 a3108f3 c2ba4d5 a3108f3 c2ba4d5 8dbf540 c2ba4d5 8dbf540 c2ba4d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
# import shutil
import os
import select
import subprocess
import sys
import time
from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import *
import streamlit as st
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from varco_arena.varco_arena_core.prompts import load_prompt
from view_utils import (
default_page_setting,
escape_markdown,
set_nav_bar,
show_linebreak_in_md,
)
VA_ROOT = Path(os.environ.get("VARCO_ARENA_RESULT_PATH", "./user_submit"))
USR_SUB = VA_ROOT.parts[-1]
import shutil
import pandas as pd
import analysis_utils as au
from view_utils import visualization
class DataCache:
def __init__(self):
self.cache = {}
def store(self, key: str, data: dict):
self.cache[key] = data
def get(self, key: str) -> Optional[dict]:
return self.cache.get(key)
# Initialize the cache in session state if it doesn't exist
if "data_cache" not in st.session_state:
st.session_state.data_cache = DataCache()
def purge_user_sub_data(data_path_to_purge: Union[Path, str] = None):
if data_path_to_purge is None:
print("nothing to purge")
return
else:
shutil.rmtree(data_path_to_purge)
print(f"purged {str(data_path_to_purge)}")
return
@st.cache_data
def load_and_cache_data(result_file_path: Optional[str] = None) -> Tuple[Dict, Dict]:
"""
Load data from file, cache it in memory, then remove the file.
Returns cached data on subsequent calls.
Args:
result_file_path: Path to the result JSON file
Returns:
Tuple of (all_result_dict, df_dict)
"""
# Check if we already have cached data for this path
if result_file_path:
cache_key = str(Path(result_file_path))
cached_data = st.session_state.data_cache.get(cache_key)
if cached_data:
return cached_data["all_result_dict"], cached_data["df_dict"]
# Initialize empty dicts
all_result_dict = {}
df_dict = {}
if result_file_path is not None:
try:
result_file_path = Path(result_file_path)
# Read and process data
df = pd.read_json(result_file_path)
for col in ["tstamp", "logs"]:
if col in df.columns:
df.drop(columns=[col], inplace=True)
df = au.index_test_scenario(df)
fig_dict_per_task = {}
df_dict_per_task = {}
# Process overall data
fig_dict_per_task["Overall"] = visualization(df, is_overall=True)
df_dict_per_task["Overall"] = df
# Process per-task data
for task in df["task"].unique():
df_task = df[df["task"] == task]
fig_dict_per_task[task] = visualization(df_task, is_overall=False)
df_dict_per_task[task] = df_task
# Create key from path components
prm_name = result_file_path.parts[-2]
exp_name = result_file_path.parts[-3]
key = f"{exp_name}/{prm_name}"
all_result_dict[key] = fig_dict_per_task
df_dict[key] = df_dict_per_task
# Store in cache before removing file
cache_data = {"all_result_dict": all_result_dict, "df_dict": df_dict}
st.session_state.data_cache.store(str(result_file_path), cache_data)
# Remove user experiment directory
purge_user_sub_data(data_path_to_purge=VA_ROOT)
except Exception as e:
st.error(f"Error processing data: {str(e)}")
return {}, {}
return all_result_dict, df_dict
def upload_files(uploaded_files) -> Path:
# prep directory for user submission
user_sub_root = VA_ROOT
if user_sub_root.exists():
if not user_sub_root.is_dir():
raise ValueError(
f"{user_sub_root} file exists and is not a directory. Consider renaming it."
)
else:
user_sub_root.mkdir(parents=True)
KST = timezone(timedelta(hours=9))
tstamp = datetime.now(KST)
tstr = tstamp.strftime("%m-%d_%H:%M:%S")
files_dir_str = "./" + str(user_sub_root / tstr)
files_dir = Path(files_dir_str)
files_dir.mkdir(parents=True, exist_ok=True)
uploaded_files = list(uploaded_files)
if not uploaded_files:
st.warning("β No files to upload. Please drag/drop or browse files to upload.")
# purge_user_sub_data(data_path_to_purge=VA_ROOT)
elif len(uploaded_files) < 2:
st.error("β You need at least 2 jsonlines files to properly run VA.")
purge_user_sub_data(data_path_to_purge=VA_ROOT)
else: # properly uploaded
for file in uploaded_files:
# Create a path for the file in the server directory
file_path = files_dir / file.name
# Save the file to the server directory
with open(file_path, "wb") as f:
f.write(file.getbuffer())
jslfiles = list(files_dir.glob("*.jsonl"))
st.success(f"β
Successfully uploaded {len(jslfiles)} jsonl files.")
return files_dir.resolve()
def run_varco_arena(
price_estimation: bool = False,
# upload_dir: Union[str, Path] = None,
promptname: str = None,
exp_name: str = None,
api_key: Optional[str] = None,
evaluation_model: str = "gpt-4o-mini",
update_interval: float = 1.0,
):
# Use environment variable for API key
ptn = f"{str(st.session_state.upfiles_dir)}"
outdir = Path(ptn)
if exp_name:
outdir = outdir / exp_name
command = f"python varco_arena/main.py -i {ptn} -o {outdir} -k {api_key} -p {promptname} -e {evaluation_model} -j 64"
if price_estimation:
command = f"{command} -c"
else:
command = command.replace("python", "yes | python ")
print(command)
api_key = None # clear immediately
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
stdin=subprocess.PIPE,
text=True,
bufsize=1,
shell=True,
)
# Set stdout and stdin to non-blocking mode
os.set_blocking(process.stdout.fileno(), False)
last_update_time = time.time()
terminal_output = st.empty()
full_output = f"{command}\n"
while True:
# Check if we have output to read
if select.select([process.stdout], [], [], 0)[0]:
output = process.stdout.readline()
if output:
full_output += output
if price_estimation:
to_show = full_output
terminal_output.code(to_show, language="bash")
else:
current_time = time.time()
if current_time - last_update_time > update_interval:
lines = full_output.split("\n")
if len(lines) < 5:
to_show = full_output
else:
to_show = "\n".join(["...\n..\n.\n"] + lines[-5:])
terminal_output.code(to_show, language="bash")
last_update_time = current_time
print(output)
time.sleep(0.1)
# Check if the process has finished
if process.poll() is not None:
# Read any remaining output
remaining_output = process.stdout.read()
if remaining_output:
lines = remaining_output.split("\n")
if len(lines) > 10:
to_show += "\n".join(["\n...\n..\n.\n"] + lines[-10:])
else:
to_show += remaining_output
terminal_output.code(to_show, language="bash")
print(remaining_output)
break
return_code = process.poll()
return outdir, return_code
def main():
# init lang
st.session_state["korean"] = st.session_state.get("korean", False)
sidebar_placeholder = default_page_setting()
set_nav_bar(
False, sidebar_placeholder=sidebar_placeholder, toggle_hashstr="app_init"
)
st.title("βοΈ VARCO ARENA βοΈ")
if st.session_state.korean:
st.write(
"""**λ°λ₯΄μ½ μλ λλ ν
μ€νΈμ
λͺ
λ Ήμ΄λ³λ‘ λΉκ΅ν λͺ¨λΈ(μμ±λ¬Έ)μ ν λλ¨ΌνΈλ₯Ό μννκ³ κ²°κ³Όλ€μ μ’
ν©νμ¬ λͺ¨λΈλ€μ μμλ₯Ό 맀기λ λ²€μΉλ§νΉ μμ€ν
μ
λλ€. μ΄κ²μ reference μμνκ³Ό λΉκ΅νμ¬ μΉλ₯ μ 맀기λ λ°©λ²λ³΄λ€ μ ννλ©° λ μ λ ΄ν©λλ€.**
λͺ¨λ²λ΅μμ νμλ‘ νμ§ μμΌλ―λ‘ μ»€μ€ν
ν
μ€νΈμ
(50+ ν) μ νμ©νλ κ²½μ° νΈλ¦¬ν λ²€μΉλ§νΉμ΄ κ°λ₯ν©λλ€."""
)
else:
st.write(
"""**VARCO Arena is an LLM benchmarking system that compares model responses across customized test scenarios (recommend >50 prompts) without requiring reference answers.**
VARCO Arena conducts tournaments between models to be compared for each test set command, ranking models accurately at an affordable price. This is more accurate and cost-effective than rating win rates by comparing against reference outputs."""
)
st.divider()
# Set up the file uploader
if st.session_state.korean:
st.markdown("### 1. λͺ¨λΈ μΆλ ₯νμΌ μ
λ‘λ")
else:
st.markdown("### 1. Upload LLM responses")
uploaded_files = st.file_uploader(
"Drag and Drop jsonlines files (.jsonl)", accept_multiple_files=True
)
if st.session_state.korean:
st.info("μ
λ‘λ νμ νμΌμ μλμΌλ‘ μμ λλ©° μμ§λκ±°λ μ¬μ©λμ§ μμ΅λλ€.\n- [μ
λ ₯ μμ νμΌ (*.jsonl)](https://huggingface.co/spaces/NCSOFT/VARCO_Arena/tree/main/varco_arena/rsc/inputs_for_dbg/dbg_llmbar_brief_inputs)")
else:
st.info(
"Your uploads will be removed automatically, not being collected nor reused for any purpose.\n- [Example input files (*.jsonl)](https://huggingface.co/spaces/NCSOFT/VARCO_Arena/tree/main/varco_arena/rsc/inputs_for_dbg/dbg_llmbar_brief_inputs)"
)
# upload state
if "upfiles_dir" not in st.session_state:
st.session_state.upfiles_dir = None
if st.button("μ
λ‘λνκΈ°" if st.session_state.korean else "Upload Files"):
st.session_state.upfiles_dir = upload_files(uploaded_files)
if st.button("μ
λ‘λν νμΌ μ§μ°κΈ°" if st.session_state.korean else "Purge my uploads"):
st.session_state.upfiles_dir = None
if VA_ROOT.is_dir():
shutil.rmtree(VA_ROOT)
st.success(
"β
μ
λ‘λν νμΌμ μλ²μμ μ§μ μ΅λλ€"
if st.session_state.korean
else "β
Removed your uploads from the server successfully"
)
else:
st.error(
"β μ§μΈ νμΌμ΄ μμ΅λλ€"
if st.session_state.korean
else "β You have nothing uploaded"
)
if st.session_state.korean:
with st.expander("ββ 무μμ μ
λ‘λ νλμββ"):
st.info(open("guide_mds/input_jsonls_kr.md", encoding="UTF8").read())
else:
with st.expander("ββ What should I upload ββ"):
st.info(open("guide_mds/input_jsonls_en.md", encoding="UTF8").read())
# Form for cost estimation
with st.form("cost_estimation_form"):
if st.session_state.korean:
st.write("### 2. κ°κ²© μ°μ ")
else:
st.write("### 2. Cost Estimation")
eval_model = st.selectbox(
"Select Judge",
open("eval_models_list.txt", encoding="UTF8").read().split("\n"),
)
promptname = st.selectbox(
"Select Evalutaion Prompt",
open("eval_prompt_list.txt", encoding="UTF8").read().split("\n"),
)
if st.session_state.korean:
st.markdown("*`llmbar`μΈ λ€λ₯Έ ν둬ννΈλ μΆ©λΆν κ²μ¦λ ν둬ννΈλ μλλλ€. (λμμ ν¨)")
else:
st.markdown(
"*Eval prompts other than `llmbar` is working example, not the optimal ones."
)
if promptname == USR_SUB:
raise ValueError(
f"{USR_SUB=} is preserved name for the system. Consider another naming for the prompt or consider changing {VA_ROOT=} (USR_SUB == VA_ROOT.parts[-1])."
)
estimate_button = st.form_submit_button("Calculate Cost!")
with st.expander(
"LLM Judgeμ νμ©λλ ν둬ννΈ (`Calculate Cost!` ν΄λ¦μ κ°±μ )"
if st.session_state.korean
else "**Evaluation Prompt for LLM Judge (will refresh after `Calculate Cost!` clicked)**"
):
prompt = load_prompt(promptname, task="-")
kwargs = dict(
inst="{inst}",
src="{src}",
out_a="{out_a}",
out_b="{out_b}",
task="-",
)
if promptname == "translation_pair":
kwargs["source_lang"] = "{source_lang}"
kwargs["target_lang"] = "{target_lang}"
prompt_cmpl = prompt.complete_prompt(**kwargs)
st.markdown(f"### Evaluation Prompt: {promptname}")
for msg in prompt_cmpl:
st.markdown(f"**{msg['role']}**")
st.info(show_linebreak_in_md(escape_markdown(msg["content"])))
if estimate_button:
if st.session_state.get("upfiles_dir") is None:
st.error(
"β Requirements: You have to upload jsonlines files first to proceed"
)
else:
st.markdown("##### Estimated Cost")
dummy_api_key = "dummy"
dummy_exp_name = "dummy"
result_file_path, return_code = run_varco_arena(
# upload_dir=st.session_state.upfiles_dir,
promptname=promptname,
api_key=dummy_api_key,
exp_name=dummy_exp_name,
price_estimation=True,
evaluation_model=eval_model,
)
if return_code:
st.error(
"β RuntimeError: An error occurred during cost estimation. **Restart from file upload!**"
)
purge_user_sub_data(data_path_to_purge=VA_ROOT)
else:
st.success("β
Cost estimation completed successfully")
st.session_state.cost_estimated = True
# Form for actual run
with st.form("run_arena_form"):
if st.session_state.korean:
st.write("### 3. Varco Arena ꡬλνκΈ°")
else:
st.write("### 3. Run Varco Arena")
api_key = st.text_input("Enter your OpenAI API Key", type="password")
# demo exp name fixated
KST = timezone(timedelta(hours=9))
tstamp = datetime.now(KST)
tstr = tstamp.strftime("%m-%d_%H:%M:%S")
exp_name = f"{tstr}_KST_submit"
if st.session_state.korean:
st.write("**μ£Όμ**:`Ctrl+C` λ²νΌμ ꡬνλμ§ μμμ΅λλ€. ꡬλ μ μκ³ ν΄μ£ΌμΈμ.")
else:
st.write("**Caution: `Ctrl+C` button hasn't been implemented.**")
run_button = st.form_submit_button(
"π₯ Run Arena!",
disabled=(not st.session_state.get("cost_estimated", False))
or "result_file_path"
in st.session_state.keys(), # run already performed once
)
if run_button:
set_nav_bar(
True,
sidebar_placeholder=sidebar_placeholder,
toggle_hashstr="app_during_run",
)
if st.session_state.get("upfiles_dir") is None:
st.error(
"β Requirements: You have to upload jsonlines files first to proceed"
)
elif not api_key:
st.error("β Requirements: OpenAI key required to run VA.")
else:
result_file_path, return_code = run_varco_arena(
# upload_dir=st.session_state.upfiles_dir,
promptname=promptname,
api_key=api_key,
exp_name=exp_name,
price_estimation=False,
evaluation_model=eval_model,
)
if return_code:
st.error(
"β RuntimeError: An error occurred during Varco Arena run. Check the file and **restart from file upload!**"
)
purge_user_sub_data(data_path_to_purge=VA_ROOT)
else:
st.success("β
Varco Arena run completed successfully")
st.session_state.result_file_path = list(
result_file_path.glob("**/result.json")
)[-1]
set_nav_bar(
False, sidebar_placeholder=sidebar_placeholder, toggle_hashstr="app_run_done"
)
if st.session_state.get("result_file_path", None) is not None:
print(f"{st.session_state.get('result_file_path', None)=}")
load_and_cache_data(result_file_path=str(st.session_state.result_file_path))
if __name__ == "__main__":
main()
|