Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,90 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import (
|
3 |
-
PreTrainedTokenizerBase,
|
4 |
-
PreTrainedTokenizerFast,
|
5 |
-
AutoModelForCausalLM,
|
6 |
-
)
|
7 |
-
|
8 |
-
model_dict = {
|
9 |
-
"NanoTranslator-XS": "Mxode/NanoTranslator-XS",
|
10 |
-
"NanoTranslator-S": "Mxode/NanoTranslator-S",
|
11 |
-
"NanoTranslator-M": "Mxode/NanoTranslator-M",
|
12 |
-
"NanoTranslator-M2": "Mxode/NanoTranslator-M2",
|
13 |
-
"NanoTranslator-L": "Mxode/NanoTranslator-L",
|
14 |
-
"NanoTranslator-XL": "Mxode/NanoTranslator-XL",
|
15 |
-
"NanoTranslator-XXL": "Mxode/NanoTranslator-XXL",
|
16 |
-
"NanoTranslator-XXL2": "Mxode/NanoTranslator-XXL2",
|
17 |
-
}
|
18 |
-
|
19 |
-
|
20 |
-
# initialize model
|
21 |
-
@st.cache_resource
|
22 |
-
def load_model(model_path: str):
|
23 |
-
model = AutoModelForCausalLM.from_pretrained(model_path)
|
24 |
-
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_path)
|
25 |
-
return model, tokenizer
|
26 |
-
|
27 |
-
|
28 |
-
def translate(text: str, model, tokenizer: PreTrainedTokenizerBase, **kwargs):
|
29 |
-
generation_args = dict(
|
30 |
-
max_new_tokens=kwargs.pop("max_new_tokens", 64),
|
31 |
-
do_sample=kwargs.pop("do_sample", True),
|
32 |
-
temperature=kwargs.pop("temperature", 0.55),
|
33 |
-
top_p=kwargs.pop("top_p", 0.8),
|
34 |
-
top_k=kwargs.pop("top_k", 40),
|
35 |
-
**kwargs
|
36 |
-
)
|
37 |
-
|
38 |
-
prompt = "<|im_start|>" + text + "<|endoftext|>"
|
39 |
-
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
40 |
-
|
41 |
-
generated_ids = model.generate(model_inputs.input_ids, **generation_args)
|
42 |
-
generated_ids = [
|
43 |
-
output_ids[len(input_ids) :]
|
44 |
-
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
45 |
-
]
|
46 |
-
|
47 |
-
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
48 |
-
return response
|
49 |
-
|
50 |
-
|
51 |
-
st.title("NanoTranslator-Demo")
|
52 |
-
|
53 |
-
st.sidebar.title("Options")
|
54 |
-
model_choice = st.sidebar.selectbox("Model", list(model_dict.keys()))
|
55 |
-
do_sample = st.sidebar.checkbox("do_sample", value=True)
|
56 |
-
max_new_tokens = st.sidebar.slider(
|
57 |
-
"max_new_tokens", min_value=1, max_value=256, value=64
|
58 |
-
)
|
59 |
-
temperature = st.sidebar.slider(
|
60 |
-
"temperature", min_value=0.01, max_value=1.5, value=0.55, step=0.01
|
61 |
-
)
|
62 |
-
top_p = st.sidebar.slider("top_p", min_value=0.01, max_value=1.0, value=0.8, step=0.01)
|
63 |
-
top_k = st.sidebar.slider("top_k", min_value=1, max_value=100, value=40, step=1)
|
64 |
-
|
65 |
-
# 根据选择的模型加载
|
66 |
-
model_path = model_dict[model_choice]
|
67 |
-
model, tokenizer = load_model(model_path)
|
68 |
-
|
69 |
-
input_text = st.text_area(
|
70 |
-
"Please input the text to be translated (Currently supports only English to Chinese):",
|
71 |
-
"Each step of the cell cycle is monitored by internal.",
|
72 |
-
)
|
73 |
-
|
74 |
-
if st.button("translate"):
|
75 |
-
if input_text.strip():
|
76 |
-
with st.spinner("Translating..."):
|
77 |
-
translation = translate(
|
78 |
-
input_text,
|
79 |
-
model,
|
80 |
-
tokenizer,
|
81 |
-
max_new_tokens=max_new_tokens,
|
82 |
-
do_sample=do_sample,
|
83 |
-
temperature=temperature,
|
84 |
-
top_p=top_p,
|
85 |
-
top_k=top_k,
|
86 |
-
)
|
87 |
-
st.success("Translated successfully!")
|
88 |
-
st.write(translation)
|
89 |
-
else:
|
90 |
-
st.warning("Please input text before translation!")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import (
|
3 |
+
PreTrainedTokenizerBase,
|
4 |
+
PreTrainedTokenizerFast,
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
)
|
7 |
+
|
8 |
+
model_dict = {
|
9 |
+
"NanoTranslator-XS": "Mxode/NanoTranslator-XS",
|
10 |
+
"NanoTranslator-S": "Mxode/NanoTranslator-S",
|
11 |
+
"NanoTranslator-M": "Mxode/NanoTranslator-M",
|
12 |
+
"NanoTranslator-M2": "Mxode/NanoTranslator-M2",
|
13 |
+
"NanoTranslator-L": "Mxode/NanoTranslator-L",
|
14 |
+
"NanoTranslator-XL": "Mxode/NanoTranslator-XL",
|
15 |
+
"NanoTranslator-XXL": "Mxode/NanoTranslator-XXL",
|
16 |
+
"NanoTranslator-XXL2": "Mxode/NanoTranslator-XXL2",
|
17 |
+
}
|
18 |
+
|
19 |
+
|
20 |
+
# initialize model
|
21 |
+
@st.cache_resource
|
22 |
+
def load_model(model_path: str):
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
24 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_path)
|
25 |
+
return model, tokenizer
|
26 |
+
|
27 |
+
|
28 |
+
def translate(text: str, model, tokenizer: PreTrainedTokenizerBase, **kwargs):
|
29 |
+
generation_args = dict(
|
30 |
+
max_new_tokens=kwargs.pop("max_new_tokens", 64),
|
31 |
+
do_sample=kwargs.pop("do_sample", True),
|
32 |
+
temperature=kwargs.pop("temperature", 0.55),
|
33 |
+
top_p=kwargs.pop("top_p", 0.8),
|
34 |
+
top_k=kwargs.pop("top_k", 40),
|
35 |
+
**kwargs
|
36 |
+
)
|
37 |
+
|
38 |
+
prompt = "<|im_start|>" + text + "<|endoftext|>"
|
39 |
+
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
40 |
+
|
41 |
+
generated_ids = model.generate(model_inputs.input_ids, **generation_args)
|
42 |
+
generated_ids = [
|
43 |
+
output_ids[len(input_ids) :]
|
44 |
+
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
45 |
+
]
|
46 |
+
|
47 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
48 |
+
return response
|
49 |
+
|
50 |
+
|
51 |
+
st.title("NanoTranslator-Demo")
|
52 |
+
|
53 |
+
st.sidebar.title("Options")
|
54 |
+
model_choice = st.sidebar.selectbox("Model", list(model_dict.keys()), index=list(model_options.keys()).index("NanoTranslator-XXL2"))
|
55 |
+
do_sample = st.sidebar.checkbox("do_sample", value=True)
|
56 |
+
max_new_tokens = st.sidebar.slider(
|
57 |
+
"max_new_tokens", min_value=1, max_value=256, value=64
|
58 |
+
)
|
59 |
+
temperature = st.sidebar.slider(
|
60 |
+
"temperature", min_value=0.01, max_value=1.5, value=0.55, step=0.01
|
61 |
+
)
|
62 |
+
top_p = st.sidebar.slider("top_p", min_value=0.01, max_value=1.0, value=0.8, step=0.01)
|
63 |
+
top_k = st.sidebar.slider("top_k", min_value=1, max_value=100, value=40, step=1)
|
64 |
+
|
65 |
+
# 根据选择的模型加载
|
66 |
+
model_path = model_dict[model_choice]
|
67 |
+
model, tokenizer = load_model(model_path)
|
68 |
+
|
69 |
+
input_text = st.text_area(
|
70 |
+
"Please input the text to be translated (Currently supports only English to Chinese):",
|
71 |
+
"Each step of the cell cycle is monitored by internal.",
|
72 |
+
)
|
73 |
+
|
74 |
+
if st.button("translate"):
|
75 |
+
if input_text.strip():
|
76 |
+
with st.spinner("Translating..."):
|
77 |
+
translation = translate(
|
78 |
+
input_text,
|
79 |
+
model,
|
80 |
+
tokenizer,
|
81 |
+
max_new_tokens=max_new_tokens,
|
82 |
+
do_sample=do_sample,
|
83 |
+
temperature=temperature,
|
84 |
+
top_p=top_p,
|
85 |
+
top_k=top_k,
|
86 |
+
)
|
87 |
+
st.success("Translated successfully!")
|
88 |
+
st.write(translation)
|
89 |
+
else:
|
90 |
+
st.warning("Please input text before translation!")
|