# DanBooru IMage Utility functions # Taken from https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags import cv2 import numpy as np from PIL import Image import PIL def smart_imread(img, flag=cv2.IMREAD_UNCHANGED): if img.endswith(".gif"): img = Image.open(img) img = img.convert("RGB") img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) else: img = cv2.imread(img, flag) return img def smart_24bit(img): if img.dtype is np.dtype(np.uint16): img = (img / 257).astype(np.uint8) if len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) elif img.shape[2] == 4: trans_mask = img[:, :, 3] == 0 img[trans_mask] = [255, 255, 255, 255] img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) return img def make_square(img, target_size): old_size = img.shape[:2] desired_size = max(old_size) desired_size = max(desired_size, target_size) delta_w = desired_size - old_size[1] delta_h = desired_size - old_size[0] top, bottom = delta_h // 2, delta_h - (delta_h // 2) left, right = delta_w // 2, delta_w - (delta_w // 2) color = [255, 255, 255] new_im = cv2.copyMakeBorder( img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color ) return new_im def smart_resize(img, size): # Assumes the image has already gone through make_square if img.shape[0] > size: img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA) elif img.shape[0] < size: img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC) return img def preprocess_image(img): image = img.convert('RGBA') new_image = PIL.Image.new('RGBA', image.size, 'WHITE') new_image.paste(image, mask=image) image = new_image.convert('RGB') image = np.asarray(image) image = make_square(image, 384) image = smart_resize(image, 384) image = image.astype(np.float32) return Image.fromarray(np.uint8(image))