import gradio as gr import numpy as np import torch from PIL import Image from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator from transformers import pipeline import colorsys sam_checkpoint = "sam_vit_h_4b8939.pth" model_type = "vit_h" device = "cuda" if torch.cuda.is_available() else "cpu" #sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) #sam.to(device=device) #predictor = SamPredictor(sam) #mask_generator = SamAutomaticMaskGenerator(sam) generator = pipeline(model="facebook/sam-vit-base", task="mask-generation", points_per_batch=256) #image_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" # controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( # "SAMControlNet/sd-controlnet-sam-seg", dtype=jnp.float32 # ) # pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( # "runwayml/stable-diffusion-v1-5", # controlnet=controlnet, # revision="flax", # dtype=jnp.bfloat16, # ) # params["controlnet"] = controlnet_params # p_params = replicate(params) with gr.Blocks() as demo: gr.Markdown("# Ahsans version WildSynth: Synthetic Wildlife Data Generation") gr.Markdown( """ ## Work in Progress ### About ### How To Use """ ) with gr.Row(): input_img = gr.Image(label="Input", type="pil") mask_img = gr.Image(label="Mask", interactive=False) output_img = gr.Image(label="Output", interactive=False) with gr.Row(): submit = gr.Button("Submit") clear = gr.Button("Clear") def generate_mask(image): outputs = generator(image, points_per_batch=256) mask_images = [] #for mask in outputs["masks"]: # color = np.concatenate([np.random.random(3), np.array([1.0])], axis=0) # h, w = mask.shape[-2:] # mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) # np_img = mask_image; # np_img = np.squeeze(np_img, axis=2) # axis=2 is channel dimension # pil_img = Image.fromarray(np_img, 'RGB') # mask_images.append(pil_img) #return np.stack(mask_images) return image # def infer( # image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4 # ): # try: # rng = jax.random.PRNGKey(int(seed)) # num_inference_steps = int(num_inference_steps) # image = Image.fromarray(image, mode="RGB") # num_samples = max(jax.device_count(), int(num_samples)) # p_rng = jax.random.split(rng, jax.device_count()) # prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) # negative_prompt_ids = pipe.prepare_text_inputs( # [negative_prompts] * num_samples # ) # processed_image = pipe.prepare_image_inputs([image] * num_samples) # prompt_ids = shard(prompt_ids) # negative_prompt_ids = shard(negative_prompt_ids) # processed_image = shard(processed_image) # output = pipe( # prompt_ids=prompt_ids, # image=processed_image, # params=p_params, # prng_seed=p_rng, # num_inference_steps=num_inference_steps, # neg_prompt_ids=negative_prompt_ids, # jit=True, # ).images # del negative_prompt_ids # del processed_image # del prompt_ids # output = output.reshape((num_samples,) + output.shape[-3:]) # final_image = [np.array(x * 255, dtype=np.uint8) for x in output] # print(output.shape) # del output # except Exception as e: # print("Error: " + str(e)) # final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples # finally: # gc.collect() # return final_image # def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg): # img = None # mask = None # seg = None # out = None # prompt = "" # neg_prompt = "" # bg = False # return img, mask, seg, out, prompt, neg_prompt, bg input_img.change( generate_mask, inputs=[input_img], outputs=[mask_img], ) # submit.click( # infer, # inputs=[mask_img, prompt_text, negative_prompt_text], # outputs=[output_img], # ) # clear.click( # _clear, # inputs=[ # input_img, # mask_img, # output_img, # prompt_text, # negative_prompt_text, # ], # outputs=[ # input_img, # mask_img, # output_img, # prompt_text, # negative_prompt_text, # ], # ) if __name__ == "__main__": demo.queue() demo.launch()