|
import gradio as gr |
|
import asyncio |
|
from threading import RLock |
|
from pathlib import Path |
|
from huggingface_hub import InferenceClient |
|
import os |
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None |
|
server_timeout = 600 |
|
inference_timeout = 300 |
|
|
|
|
|
lock = RLock() |
|
loaded_models = {} |
|
model_info_dict = {} |
|
|
|
|
|
def to_list(s): |
|
return [x.strip() for x in s.split(",")] |
|
|
|
|
|
def list_sub(a, b): |
|
return [e for e in a if e not in b] |
|
|
|
|
|
def list_uniq(l): |
|
return sorted(set(l), key=l.index) |
|
|
|
|
|
def is_repo_name(s): |
|
import re |
|
return re.fullmatch(r'^[^/]+?/[^/]+?$', s) |
|
|
|
|
|
def get_status(model_name: str): |
|
from huggingface_hub import InferenceClient |
|
client = InferenceClient(token=HF_TOKEN, timeout=150) |
|
return client.get_model_status(model_name) |
|
|
|
|
|
def is_loadable(model_name: str, force_gpu: bool = True): |
|
try: |
|
status = get_status(model_name) |
|
except Exception as e: |
|
print(e) |
|
print(f"Couldn't load {model_name}.") |
|
return False |
|
gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys() |
|
if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state): |
|
print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}") |
|
return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state) |
|
|
|
|
|
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False): |
|
from huggingface_hub import HfApi |
|
api = HfApi(token=HF_TOKEN) |
|
default_tags = ["diffusers"] |
|
if not sort: sort = "last_modified" |
|
limit = limit * 20 if check_status and force_gpu else limit * 5 |
|
models = [] |
|
try: |
|
model_infos = api.list_models(author=author, |
|
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit) |
|
except Exception as e: |
|
print(f"Error: Failed to list models.") |
|
print(e) |
|
return models |
|
for model in model_infos: |
|
if not model.private and not model.gated or HF_TOKEN is not None: |
|
loadable = is_loadable(model.id, force_gpu) if check_status else True |
|
if not_tag and not_tag in model.tags or not loadable or "not-for-all-audiences" in model.tags: continue |
|
models.append(model.id) |
|
if len(models) == limit: break |
|
return models |
|
|
|
|
|
def get_t2i_model_info_dict(repo_id: str): |
|
from huggingface_hub import HfApi |
|
api = HfApi(token=HF_TOKEN) |
|
info = {"md": "None"} |
|
try: |
|
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info |
|
model = api.model_info(repo_id=repo_id, token=HF_TOKEN) |
|
except Exception as e: |
|
print(f"Error: Failed to get {repo_id}'s info.") |
|
print(e) |
|
return info |
|
if model.private or model.gated and HF_TOKEN is None: return info |
|
try: |
|
tags = model.tags |
|
except Exception as e: |
|
print(e) |
|
return info |
|
if not 'diffusers' in model.tags: return info |
|
if 'diffusers:FluxPipeline' in tags: info["ver"] = "FLUX.1" |
|
elif 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL" |
|
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5" |
|
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3" |
|
else: info["ver"] = "Other" |
|
info["url"] = f"https://huggingface.co/{repo_id}/" |
|
info["tags"] = model.card_data.tags if model.card_data and model.card_data.tags else [] |
|
info["downloads"] = model.downloads |
|
info["likes"] = model.likes |
|
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d") |
|
un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl'] |
|
descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❤: {info["likes"]}'] + [info["last_modified"]] |
|
info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})' |
|
return info |
|
|
|
|
|
def rename_image(image_path: str | None, model_name: str, save_path: str | None = None): |
|
import shutil |
|
from datetime import datetime, timezone, timedelta |
|
if image_path is None: return None |
|
dt_now = datetime.now(timezone(timedelta(hours=9))) |
|
filename = f"{model_name.split('/')[-1]}_{dt_now.strftime('%Y%m%d_%H%M%S')}.png" |
|
try: |
|
if Path(image_path).exists(): |
|
png_path = "image.png" |
|
if str(Path(image_path).resolve()) != str(Path(png_path).resolve()): shutil.copy(image_path, png_path) |
|
if save_path is not None: |
|
new_path = str(Path(png_path).resolve().rename(Path(save_path).resolve())) |
|
else: |
|
new_path = str(Path(png_path).resolve().rename(Path(filename).resolve())) |
|
return new_path |
|
else: |
|
return None |
|
except Exception as e: |
|
print(e) |
|
return None |
|
|
|
|
|
def save_gallery(image_path: str | None, images: list[tuple] | None): |
|
if images is None: images = [] |
|
files = [i[0] for i in images] |
|
if image_path is None: return images, files |
|
files.insert(0, str(image_path)) |
|
images.insert(0, (str(image_path), Path(image_path).stem)) |
|
return images, files |
|
|
|
|
|
|
|
|
|
from typing import Literal |
|
def load_from_model(model_name: str, hf_token: str | Literal[False] | None = None): |
|
import httpx |
|
import huggingface_hub |
|
from gradio.exceptions import ModelNotFoundError, TooManyRequestsError |
|
model_url = f"https://huggingface.co/{model_name}" |
|
api_url = f"/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%3Cspan class="hljs-subst">{model_name}" |
|
print(f"Fetching model from: {model_url}") |
|
|
|
headers = ({} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"}) |
|
response = httpx.request("GET", api_url, headers=headers) |
|
if response.status_code != 200: |
|
raise ModelNotFoundError( |
|
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter." |
|
) |
|
p = response.json().get("pipeline_tag") |
|
if p != "text-to-image": raise ModelNotFoundError(f"This model isn't for text-to-image or unsupported: {model_name}.") |
|
headers["X-Wait-For-Model"] = "true" |
|
client = huggingface_hub.InferenceClient(model=model_name, headers=headers, |
|
token=hf_token, timeout=server_timeout) |
|
inputs = gr.components.Textbox(label="Input") |
|
outputs = gr.components.Image(label="Output") |
|
fn = client.text_to_image |
|
|
|
def query_huggingface_inference_endpoints(*data, **kwargs): |
|
try: |
|
data = fn(*data, **kwargs) |
|
except huggingface_hub.utils.HfHubHTTPError as e: |
|
if "429" in str(e): |
|
raise TooManyRequestsError() from e |
|
except Exception as e: |
|
raise Exception() from e |
|
return data |
|
|
|
interface_info = { |
|
"fn": query_huggingface_inference_endpoints, |
|
"inputs": inputs, |
|
"outputs": outputs, |
|
"title": model_name, |
|
} |
|
return gr.Interface(**interface_info) |
|
|
|
|
|
def load_model(model_name: str): |
|
global loaded_models |
|
global model_info_dict |
|
if model_name in loaded_models.keys(): return loaded_models[model_name] |
|
try: |
|
loaded_models[model_name] = load_from_model(model_name, hf_token=HF_TOKEN) |
|
print(f"Loaded: {model_name}") |
|
except Exception as e: |
|
if model_name in loaded_models.keys(): del loaded_models[model_name] |
|
print(f"Failed to load: {model_name}") |
|
print(e) |
|
return None |
|
try: |
|
model_info_dict[model_name] = get_t2i_model_info_dict(model_name) |
|
print(f"Assigned: {model_name}") |
|
except Exception as e: |
|
if model_name in model_info_dict.keys(): del model_info_dict[model_name] |
|
print(f"Failed to assigned: {model_name}") |
|
print(e) |
|
return loaded_models[model_name] |
|
|
|
|
|
def load_model_api(model_name: str): |
|
global loaded_models |
|
global model_info_dict |
|
if model_name in loaded_models.keys(): return loaded_models[model_name] |
|
try: |
|
client = InferenceClient(timeout=5) |
|
status = client.get_model_status(model_name, token=HF_TOKEN) |
|
if status is None or status.framework != "diffusers" or status.state not in ["Loadable", "Loaded"]: |
|
print(f"Failed to load by API: {model_name}") |
|
return None |
|
else: |
|
loaded_models[model_name] = InferenceClient(model_name, token=HF_TOKEN, timeout=server_timeout) |
|
print(f"Loaded by API: {model_name}") |
|
except Exception as e: |
|
if model_name in loaded_models.keys(): del loaded_models[model_name] |
|
print(f"Failed to load by API: {model_name}") |
|
print(e) |
|
return None |
|
try: |
|
model_info_dict[model_name] = get_t2i_model_info_dict(model_name) |
|
print(f"Assigned by API: {model_name}") |
|
except Exception as e: |
|
if model_name in model_info_dict.keys(): del model_info_dict[model_name] |
|
print(f"Failed to assigned by API: {model_name}") |
|
print(e) |
|
return loaded_models[model_name] |
|
|
|
|
|
def load_models(models: list): |
|
for model in models: |
|
load_model(model) |
|
|
|
|
|
positive_prefix = { |
|
"Pony": to_list("score_9, score_8_up, score_7_up"), |
|
"Pony Anime": to_list("source_anime, anime, score_9, score_8_up, score_7_up"), |
|
} |
|
positive_suffix = { |
|
"Common": to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres"), |
|
"Anime": to_list("anime artwork, anime style, studio anime, highly detailed"), |
|
} |
|
negative_prefix = { |
|
"Pony": to_list("score_6, score_5, score_4"), |
|
"Pony Anime": to_list("score_6, score_5, score_4, source_pony, source_furry, source_cartoon"), |
|
"Pony Real": to_list("score_6, score_5, score_4, source_anime, source_pony, source_furry, source_cartoon"), |
|
} |
|
negative_suffix = { |
|
"Common": to_list("lowres, (bad), bad hands, bad feet, text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"), |
|
"Pony Anime": to_list("busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends"), |
|
"Pony Real": to_list("ugly, airbrushed, simple background, cgi, cartoon, anime"), |
|
} |
|
positive_all = negative_all = [] |
|
for k, v in (positive_prefix | positive_suffix).items(): |
|
positive_all = positive_all + v + [s.replace("_", " ") for s in v] |
|
positive_all = list_uniq(positive_all) |
|
for k, v in (negative_prefix | negative_suffix).items(): |
|
negative_all = negative_all + v + [s.replace("_", " ") for s in v] |
|
positive_all = list_uniq(positive_all) |
|
|
|
|
|
def recom_prompt(prompt: str = "", neg_prompt: str = "", pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []): |
|
def flatten(src): |
|
return [item for row in src for item in row] |
|
prompts = to_list(prompt) |
|
neg_prompts = to_list(neg_prompt) |
|
prompts = list_sub(prompts, positive_all) |
|
neg_prompts = list_sub(neg_prompts, negative_all) |
|
last_empty_p = [""] if not prompts and type != "None" else [] |
|
last_empty_np = [""] if not neg_prompts and type != "None" else [] |
|
prefix_ps = flatten([positive_prefix.get(s, []) for s in pos_pre]) |
|
suffix_ps = flatten([positive_suffix.get(s, []) for s in pos_suf]) |
|
prefix_nps = flatten([negative_prefix.get(s, []) for s in neg_pre]) |
|
suffix_nps = flatten([negative_suffix.get(s, []) for s in neg_suf]) |
|
prompt = ", ".join(list_uniq(prefix_ps + prompts + suffix_ps) + last_empty_p) |
|
neg_prompt = ", ".join(list_uniq(prefix_nps + neg_prompts + suffix_nps) + last_empty_np) |
|
return prompt, neg_prompt |
|
|
|
|
|
recom_prompt_type = { |
|
"None": ([], [], [], []), |
|
"Auto": ([], [], [], []), |
|
"Common": ([], ["Common"], [], ["Common"]), |
|
"Animagine": ([], ["Common", "Anime"], [], ["Common"]), |
|
"Pony": (["Pony"], ["Common"], ["Pony"], ["Common"]), |
|
"Pony Anime": (["Pony", "Pony Anime"], ["Common", "Anime"], ["Pony", "Pony Anime"], ["Common", "Pony Anime"]), |
|
"Pony Real": (["Pony"], ["Common"], ["Pony", "Pony Real"], ["Common", "Pony Real"]), |
|
} |
|
|
|
|
|
enable_auto_recom_prompt = False |
|
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"): |
|
global enable_auto_recom_prompt |
|
if type == "Auto": enable_auto_recom_prompt = True |
|
else: enable_auto_recom_prompt = False |
|
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], [])) |
|
return recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf) |
|
|
|
|
|
def set_recom_prompt_preset(type: str = "None"): |
|
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], [])) |
|
return pos_pre, pos_suf, neg_pre, neg_suf |
|
|
|
|
|
def get_recom_prompt_type(): |
|
type = list(recom_prompt_type.keys()) |
|
type.remove("Auto") |
|
return type |
|
|
|
|
|
def get_positive_prefix(): |
|
return list(positive_prefix.keys()) |
|
|
|
|
|
def get_positive_suffix(): |
|
return list(positive_suffix.keys()) |
|
|
|
|
|
def get_negative_prefix(): |
|
return list(negative_prefix.keys()) |
|
|
|
|
|
def get_negative_suffix(): |
|
return list(negative_suffix.keys()) |
|
|
|
|
|
def get_tag_type(pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []): |
|
tag_type = "danbooru" |
|
words = pos_pre + pos_suf + neg_pre + neg_suf |
|
for word in words: |
|
if "Pony" in word: |
|
tag_type = "e621" |
|
break |
|
return tag_type |
|
|
|
|
|
def get_model_info_md(model_name: str): |
|
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "") |
|
|
|
|
|
def change_model(model_name: str): |
|
load_model_api(model_name) |
|
return get_model_info_md(model_name) |
|
|
|
|
|
def warm_model(model_name: str): |
|
model = load_model_api(model_name) |
|
if model: |
|
try: |
|
print(f"Warming model: {model_name}") |
|
infer_body(model, " ") |
|
except Exception as e: |
|
print(e) |
|
|
|
|
|
|
|
|
|
def infer_body(client: InferenceClient | gr.Interface | object, model_str: str, prompt: str, neg_prompt: str = "", |
|
height: int = 0, width: int = 0, steps: int = 0, cfg: int = 0, seed: int = -1): |
|
png_path = "image.png" |
|
kwargs = {} |
|
if height > 0: kwargs["height"] = height |
|
if width > 0: kwargs["width"] = width |
|
if steps > 0: kwargs["num_inference_steps"] = steps |
|
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg |
|
if seed == -1: kwargs["seed"] = randomize_seed() |
|
else: kwargs["seed"] = seed |
|
try: |
|
if isinstance(client, InferenceClient): |
|
image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN) |
|
elif isinstance(client, gr.Interface): |
|
image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN) |
|
else: return None |
|
if isinstance(image, tuple): return None |
|
return save_image(image, png_path, model_str, prompt, neg_prompt, height, width, steps, cfg, seed) |
|
except Exception as e: |
|
print(e) |
|
raise Exception() from e |
|
|
|
|
|
async def infer(model_name: str, prompt: str, neg_prompt: str ="", height: int = 0, width: int = 0, |
|
steps: int = 0, cfg: int = 0, seed: int = -1, |
|
save_path: str | None = None, timeout: float = inference_timeout): |
|
model = load_model(model_name) |
|
if not model: return None |
|
task = asyncio.create_task(asyncio.to_thread(infer_body, model, model_name, prompt, neg_prompt, |
|
height, width, steps, cfg, seed)) |
|
await asyncio.sleep(0) |
|
try: |
|
result = await asyncio.wait_for(task, timeout=timeout) |
|
except asyncio.TimeoutError as e: |
|
print(e) |
|
print(f"Task timed out: {model_name}") |
|
if not task.done(): task.cancel() |
|
result = None |
|
raise Exception(f"Task timed out: {model_name}") from e |
|
except Exception as e: |
|
print(e) |
|
if not task.done(): task.cancel() |
|
result = None |
|
raise Exception() from e |
|
if task.done() and result is not None: |
|
with lock: |
|
image = rename_image(result, model_name, save_path) |
|
return image |
|
return None |
|
|
|
|
|
|
|
def infer_fn(model_name: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0, |
|
steps: int = 0, cfg: int = 0, seed: int = -1, |
|
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None): |
|
if model_name == 'NA': |
|
return None |
|
try: |
|
loop = asyncio.get_running_loop() |
|
except Exception: |
|
loop = asyncio.new_event_loop() |
|
try: |
|
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf) |
|
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width, |
|
steps, cfg, seed, save_path, inference_timeout)) |
|
except (Exception, asyncio.CancelledError) as e: |
|
print(e) |
|
print(f"Task aborted: {model_name}, Error: {e}") |
|
result = None |
|
raise gr.Error(f"Task aborted: {model_name}, Error: {e}") |
|
finally: |
|
loop.close() |
|
return result |
|
|
|
|
|
def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0, |
|
steps: int = 0, cfg: int = 0, seed: int = -1, |
|
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None): |
|
import random |
|
if model_name_dummy == 'NA': |
|
return None |
|
random.seed() |
|
model_name = random.choice(list(loaded_models.keys())) |
|
try: |
|
loop = asyncio.get_running_loop() |
|
except Exception: |
|
loop = asyncio.new_event_loop() |
|
try: |
|
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf) |
|
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width, |
|
steps, cfg, seed, save_path, inference_timeout)) |
|
except (Exception, asyncio.CancelledError) as e: |
|
print(e) |
|
print(f"Task aborted: {model_name}, Error: {e}") |
|
result = None |
|
raise gr.Error(f"Task aborted: {model_name}, Error: {e}") |
|
finally: |
|
loop.close() |
|
return result |
|
|
|
|
|
def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1): |
|
from PIL import Image, PngImagePlugin |
|
import json |
|
try: |
|
metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}} |
|
if steps > 0: metadata["num_inference_steps"] = steps |
|
if cfg > 0: metadata["guidance_scale"] = cfg |
|
if seed != -1: metadata["seed"] = seed |
|
if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}" |
|
metadata_str = json.dumps(metadata) |
|
info = PngImagePlugin.PngInfo() |
|
info.add_text("metadata", metadata_str) |
|
image.save(savefile, "PNG", pnginfo=info) |
|
return str(Path(savefile).resolve()) |
|
except Exception as e: |
|
print(f"Failed to save image file: {e}") |
|
raise Exception(f"Failed to save image file:") from e |
|
|
|
|
|
def randomize_seed(): |
|
from random import seed, randint |
|
MAX_SEED = 2**32-1 |
|
seed() |
|
rseed = randint(0, MAX_SEED) |
|
return rseed |
|
|
|
|
|
from translatepy import Translator |
|
translator = Translator() |
|
def translate_to_en(input: str): |
|
try: |
|
output = str(translator.translate(input, 'English')) |
|
except Exception as e: |
|
output = input |
|
print(e) |
|
return output |
|
|