import gradio as gr # from langchain.document_loaders import UnstructuredURLLoader from langchain_community.document_loaders import WebBaseLoader import os from langchain import PromptTemplate, HuggingFaceHub, LLMChain from gtts import gTTS # from IPython.display import Audio # from dotenv import load_dotenv # load_dotenv() # to load all the env variables api_key = os.getenv("HUGGINGFACE_API_TOKEN") os.environ['HUGGINGFACEHUB_API_TOKEN'] = api_key def get_url_text(url_link): try: loader = WebBaseLoader(url_link) loader.requests_per_second = 1 docs = loader.aload() extracted_text = "" for page in docs: extracted_text += page.page_content return extracted_text except Exception as e: print(f"Error fetching or processing URL: {e}") return "" def get_answer(text): template = """{text}""" prompt = PromptTemplate(template=template, input_variables=["text"]) llm_chain = LLMChain(prompt=prompt, llm=HuggingFaceHub(repo_id="Mr-Vicky-01/Bart-Finetuned-conversational-summarization", model_kwargs={"max_length":100, "max_new_tokens":100, "do_sample": False})) answer = llm_chain.run(text) return answer def text_to_speech(text, language='en'): tts = gTTS(text=text, lang=language) tts.save("output.mp3") return "output.mp3" def summarize_and_convert_to_audio(url): text = get_url_text(url) summary = get_answer(text) audio_file = text_to_speech(summary) return audio_file example = [ ["https://en.wikipedia.org/wiki/Vijay_(actor)"], ["https://en.wikipedia.org/wiki/Sam_Altman"], ["https://timesofindia.indiatimes.com/india/air-india-sacks-pilot-found-drunk-after-operating-overseas-flight/articleshow/108829830.cms"] ] iface = gr.Interface(fn=summarize_and_convert_to_audio, inputs="text", outputs="audio", title="Text Summarization & Audio Generation", description="Enter the URL of the article to summarize and convert to audio.", examples=example) iface.launch()