Spaces:
Running
on
Zero
Running
on
Zero
arthur-qiu
commited on
Commit
·
c9daaf2
1
Parent(s):
c866c6a
add turbo
Browse files- app.py +71 -19
- pipeline_freescale_turbo.py +1204 -0
- scale_attention_turbo.py +372 -0
app.py
CHANGED
@@ -5,11 +5,10 @@ import os
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
|
8 |
-
from pipeline_freescale import StableDiffusionXLPipeline
|
9 |
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
|
10 |
|
11 |
@spaces.GPU(duration=120)
|
12 |
-
def
|
13 |
pipe = pipe.to("cuda")
|
14 |
generator = torch.Generator(device='cuda')
|
15 |
generator = generator.manual_seed(seed)
|
@@ -19,28 +18,69 @@ def infer_gpu_part(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_sca
|
|
19 |
result = pipe(prompt, negative_prompt=negative_prompt, generator=generator,
|
20 |
num_inference_steps=ddim_steps, guidance_scale=guidance_scale,
|
21 |
resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
).images[0]
|
23 |
return result
|
24 |
|
25 |
def infer(prompt, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt):
|
26 |
|
|
|
27 |
disable_freeu = 'Disable FreeU' in options
|
28 |
-
|
29 |
-
if
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
pipe = StableDiffusionXLPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16)
|
41 |
|
42 |
print('GPU starts')
|
43 |
-
result = infer_gpu_part(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu)
|
44 |
print('GPU ends')
|
45 |
|
46 |
save_path = 'output.png'
|
@@ -138,6 +178,16 @@ img[src*='#center'] {
|
|
138 |
}
|
139 |
"""
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
with gr.Blocks(css=css) as demo:
|
142 |
with gr.Column(elem_id="col-container"):
|
143 |
gr.Markdown(
|
@@ -160,13 +210,13 @@ with gr.Blocks(css=css) as demo:
|
|
160 |
with gr.Accordion('FreeScale Parameters (feel free to adjust these parameters based on your prompt): ', open=False):
|
161 |
with gr.Row():
|
162 |
output_size = gr.Dropdown(["2048 x 2048", "1024 x 2048", "2048 x 1024"], value="2048 x 2048", label="Output Size (H x W)", info="Due to GPU constraints, run the demo locally for higher resolutions.", scale=2)
|
163 |
-
options = gr.CheckboxGroup(['Disable FreeU'], label='Options (NOT recommended to change)', scale=1)
|
164 |
with gr.Row():
|
165 |
ddim_steps = gr.Slider(label='DDIM Steps',
|
166 |
-
minimum=
|
167 |
-
maximum=
|
168 |
step=1,
|
169 |
-
value=
|
170 |
guidance_scale = gr.Slider(label='Guidance Scale',
|
171 |
minimum=1.0,
|
172 |
maximum=20.0,
|
@@ -186,6 +236,8 @@ with gr.Blocks(css=css) as demo:
|
|
186 |
with gr.Row():
|
187 |
negative_prompt = gr.Textbox(label='Negative Prompt', value='blurry, ugly, duplicate, poorly drawn, deformed, mosaic')
|
188 |
|
|
|
|
|
189 |
submit_btn = gr.Button("Generate", variant='primary')
|
190 |
image_result = gr.Image(label="Image Output")
|
191 |
|
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
|
|
|
8 |
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
|
9 |
|
10 |
@spaces.GPU(duration=120)
|
11 |
+
def infer_gpu_normal(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu, restart_steps):
|
12 |
pipe = pipe.to("cuda")
|
13 |
generator = torch.Generator(device='cuda')
|
14 |
generator = generator.manual_seed(seed)
|
|
|
18 |
result = pipe(prompt, negative_prompt=negative_prompt, generator=generator,
|
19 |
num_inference_steps=ddim_steps, guidance_scale=guidance_scale,
|
20 |
resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale,
|
21 |
+
restart_steps=restart_steps,
|
22 |
+
).images[0]
|
23 |
+
return result
|
24 |
+
|
25 |
+
@spaces.GPU(duration=30)
|
26 |
+
def infer_gpu_turbo(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu, restart_steps):
|
27 |
+
pipe = pipe.to("cuda")
|
28 |
+
generator = torch.Generator(device='cuda')
|
29 |
+
generator = generator.manual_seed(seed)
|
30 |
+
if not disable_freeu:
|
31 |
+
register_free_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
|
32 |
+
register_free_crossattn_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
|
33 |
+
result = pipe(prompt, negative_prompt=negative_prompt, generator=generator,
|
34 |
+
num_inference_steps=ddim_steps, guidance_scale=guidance_scale,
|
35 |
+
resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale,
|
36 |
+
restart_steps=restart_steps,
|
37 |
).images[0]
|
38 |
return result
|
39 |
|
40 |
def infer(prompt, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt):
|
41 |
|
42 |
+
disable_turbo = 'Disable Turbo' in options
|
43 |
disable_freeu = 'Disable FreeU' in options
|
44 |
+
|
45 |
+
if disable_turbo:
|
46 |
+
from pipeline_freescale import StableDiffusionXLPipeline
|
47 |
+
model_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
|
48 |
+
fast_mode = True
|
49 |
+
if output_size == "2048 x 2048":
|
50 |
+
resolutions_list = [[1024, 1024],
|
51 |
+
[2048, 2048]]
|
52 |
+
elif output_size == "1024 x 2048":
|
53 |
+
resolutions_list = [[512, 1024],
|
54 |
+
[1024, 2048]]
|
55 |
+
elif output_size == "2048 x 1024":
|
56 |
+
resolutions_list = [[1024, 512],
|
57 |
+
[2048, 1024]]
|
58 |
+
infer_gpu_part = infer_gpu_normal
|
59 |
+
restart_steps = [int(ddim_steps * 0.3)] * len(resolutions_list)
|
60 |
+
|
61 |
+
else:
|
62 |
+
from pipeline_freescale_turbo import StableDiffusionXLPipeline
|
63 |
+
model_ckpt = "stabilityai/sdxl-turbo"
|
64 |
+
fast_mode = False
|
65 |
+
if output_size == "2048 x 2048":
|
66 |
+
resolutions_list = [[512, 512],
|
67 |
+
[1024, 1024],
|
68 |
+
[2048, 2048]]
|
69 |
+
elif output_size == "1024 x 2048":
|
70 |
+
resolutions_list = [[256, 512]
|
71 |
+
[512, 1024],
|
72 |
+
[1024, 2048]]
|
73 |
+
elif output_size == "2048 x 1024":
|
74 |
+
resolutions_list = [[512, 256]
|
75 |
+
[1024, 512],
|
76 |
+
[2048, 1024]]
|
77 |
+
infer_gpu_part = infer_gpu_turbo
|
78 |
+
restart_steps = [int(ddim_steps * 0.5)] * len(resolutions_list)
|
79 |
+
|
80 |
pipe = StableDiffusionXLPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16)
|
81 |
|
82 |
print('GPU starts')
|
83 |
+
result = infer_gpu_part(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu, restart_steps)
|
84 |
print('GPU ends')
|
85 |
|
86 |
save_path = 'output.png'
|
|
|
178 |
}
|
179 |
"""
|
180 |
|
181 |
+
def step_update(options):
|
182 |
+
if 'Disable Turbo' in options:
|
183 |
+
return gr.Slider(minimum=5,
|
184 |
+
maximum=200,
|
185 |
+
value=50)
|
186 |
+
else:
|
187 |
+
return gr.Slider(minimum=2,
|
188 |
+
maximum=8,
|
189 |
+
value=4)
|
190 |
+
|
191 |
with gr.Blocks(css=css) as demo:
|
192 |
with gr.Column(elem_id="col-container"):
|
193 |
gr.Markdown(
|
|
|
210 |
with gr.Accordion('FreeScale Parameters (feel free to adjust these parameters based on your prompt): ', open=False):
|
211 |
with gr.Row():
|
212 |
output_size = gr.Dropdown(["2048 x 2048", "1024 x 2048", "2048 x 1024"], value="2048 x 2048", label="Output Size (H x W)", info="Due to GPU constraints, run the demo locally for higher resolutions.", scale=2)
|
213 |
+
options = gr.CheckboxGroup(['Disable Turbo', 'Disable FreeU'], label='Options (NOT recommended to change)', scale=1)
|
214 |
with gr.Row():
|
215 |
ddim_steps = gr.Slider(label='DDIM Steps',
|
216 |
+
minimum=2,
|
217 |
+
maximum=8,
|
218 |
step=1,
|
219 |
+
value=4)
|
220 |
guidance_scale = gr.Slider(label='Guidance Scale',
|
221 |
minimum=1.0,
|
222 |
maximum=20.0,
|
|
|
236 |
with gr.Row():
|
237 |
negative_prompt = gr.Textbox(label='Negative Prompt', value='blurry, ugly, duplicate, poorly drawn, deformed, mosaic')
|
238 |
|
239 |
+
options.change(step_update, options, ddim_steps)
|
240 |
+
|
241 |
submit_btn = gr.Button("Generate", variant='primary')
|
242 |
image_result = gr.Image(label="Image Output")
|
243 |
|
pipeline_freescale_turbo.py
ADDED
@@ -0,0 +1,1204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import os
|
3 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
7 |
+
|
8 |
+
from diffusers.image_processor import VaeImageProcessor
|
9 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
10 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
11 |
+
from diffusers.models.attention_processor import (
|
12 |
+
AttnProcessor2_0,
|
13 |
+
LoRAAttnProcessor2_0,
|
14 |
+
LoRAXFormersAttnProcessor,
|
15 |
+
XFormersAttnProcessor,
|
16 |
+
)
|
17 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
18 |
+
from diffusers.utils import (
|
19 |
+
is_accelerate_available,
|
20 |
+
is_accelerate_version,
|
21 |
+
is_invisible_watermark_available,
|
22 |
+
logging,
|
23 |
+
randn_tensor,
|
24 |
+
replace_example_docstring,
|
25 |
+
)
|
26 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
27 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
28 |
+
|
29 |
+
if is_invisible_watermark_available():
|
30 |
+
from .watermark import StableDiffusionXLWatermarker
|
31 |
+
|
32 |
+
from inspect import isfunction
|
33 |
+
from functools import partial
|
34 |
+
import numpy as np
|
35 |
+
|
36 |
+
from diffusers.models.attention import BasicTransformerBlock
|
37 |
+
from scale_attention_turbo import ori_forward, scale_forward
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
40 |
+
|
41 |
+
EXAMPLE_DOC_STRING = """
|
42 |
+
Examples:
|
43 |
+
```py
|
44 |
+
>>> import torch
|
45 |
+
>>> from diffusers import StableDiffusionXLPipeline
|
46 |
+
|
47 |
+
>>> pipe = StableDiffusionXLPipeline.from_pretrained(
|
48 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
49 |
+
... )
|
50 |
+
>>> pipe = pipe.to("cuda")
|
51 |
+
|
52 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
53 |
+
>>> image = pipe(prompt).images[0]
|
54 |
+
```
|
55 |
+
"""
|
56 |
+
|
57 |
+
def default(val, d):
|
58 |
+
if exists(val):
|
59 |
+
return val
|
60 |
+
return d() if isfunction(d) else d
|
61 |
+
|
62 |
+
def exists(val):
|
63 |
+
return val is not None
|
64 |
+
|
65 |
+
def extract_into_tensor(a, t, x_shape):
|
66 |
+
b, *_ = t.shape
|
67 |
+
out = a.gather(-1, t)
|
68 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
69 |
+
|
70 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
71 |
+
if schedule == "linear":
|
72 |
+
betas = (
|
73 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
74 |
+
)
|
75 |
+
elif schedule == "cosine":
|
76 |
+
timesteps = (
|
77 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
78 |
+
)
|
79 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
80 |
+
alphas = torch.cos(alphas).pow(2)
|
81 |
+
alphas = alphas / alphas[0]
|
82 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
83 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
84 |
+
elif schedule == "sqrt_linear":
|
85 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
86 |
+
elif schedule == "sqrt":
|
87 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
88 |
+
else:
|
89 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
90 |
+
return betas.numpy()
|
91 |
+
|
92 |
+
to_torch = partial(torch.tensor, dtype=torch.float16)
|
93 |
+
betas = make_beta_schedule("linear", 1000, linear_start=0.00085, linear_end=0.012)
|
94 |
+
alphas = 1. - betas
|
95 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
96 |
+
sqrt_alphas_cumprod = to_torch(np.sqrt(alphas_cumprod))
|
97 |
+
sqrt_one_minus_alphas_cumprod = to_torch(np.sqrt(1. - alphas_cumprod))
|
98 |
+
|
99 |
+
def q_sample(x_start, t, init_noise_sigma = 1.0, noise=None, device=None):
|
100 |
+
noise = default(noise, lambda: torch.randn_like(x_start)).to(device) * init_noise_sigma
|
101 |
+
return (extract_into_tensor(sqrt_alphas_cumprod.to(device), t, x_start.shape) * x_start +
|
102 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod.to(device), t, x_start.shape) * noise)
|
103 |
+
|
104 |
+
def get_views(height, width, h_window_size=128, w_window_size=128, h_window_stride=64, w_window_stride=64, vae_scale_factor=8):
|
105 |
+
height //= vae_scale_factor
|
106 |
+
width //= vae_scale_factor
|
107 |
+
num_blocks_height = int((height - h_window_size) / h_window_stride - 1e-6) + 2 if height > h_window_size else 1
|
108 |
+
num_blocks_width = int((width - w_window_size) / w_window_stride - 1e-6) + 2 if width > w_window_size else 1
|
109 |
+
total_num_blocks = int(num_blocks_height * num_blocks_width)
|
110 |
+
views = []
|
111 |
+
for i in range(total_num_blocks):
|
112 |
+
h_start = int((i // num_blocks_width) * h_window_stride)
|
113 |
+
h_end = h_start + h_window_size
|
114 |
+
w_start = int((i % num_blocks_width) * w_window_stride)
|
115 |
+
w_end = w_start + w_window_size
|
116 |
+
|
117 |
+
if h_end > height:
|
118 |
+
h_start = int(h_start + height - h_end)
|
119 |
+
h_end = int(height)
|
120 |
+
if w_end > width:
|
121 |
+
w_start = int(w_start + width - w_end)
|
122 |
+
w_end = int(width)
|
123 |
+
if h_start < 0:
|
124 |
+
h_end = int(h_end - h_start)
|
125 |
+
h_start = 0
|
126 |
+
if w_start < 0:
|
127 |
+
w_end = int(w_end - w_start)
|
128 |
+
w_start = 0
|
129 |
+
|
130 |
+
random_jitter = True
|
131 |
+
if random_jitter:
|
132 |
+
h_jitter_range = (h_window_size - h_window_stride) // 4
|
133 |
+
w_jitter_range = (w_window_size - w_window_stride) // 4
|
134 |
+
h_jitter = 0
|
135 |
+
w_jitter = 0
|
136 |
+
|
137 |
+
if (w_start != 0) and (w_end != width):
|
138 |
+
w_jitter = random.randint(-w_jitter_range, w_jitter_range)
|
139 |
+
elif (w_start == 0) and (w_end != width):
|
140 |
+
w_jitter = random.randint(-w_jitter_range, 0)
|
141 |
+
elif (w_start != 0) and (w_end == width):
|
142 |
+
w_jitter = random.randint(0, w_jitter_range)
|
143 |
+
if (h_start != 0) and (h_end != height):
|
144 |
+
h_jitter = random.randint(-h_jitter_range, h_jitter_range)
|
145 |
+
elif (h_start == 0) and (h_end != height):
|
146 |
+
h_jitter = random.randint(-h_jitter_range, 0)
|
147 |
+
elif (h_start != 0) and (h_end == height):
|
148 |
+
h_jitter = random.randint(0, h_jitter_range)
|
149 |
+
h_start += (h_jitter + h_jitter_range)
|
150 |
+
h_end += (h_jitter + h_jitter_range)
|
151 |
+
w_start += (w_jitter + w_jitter_range)
|
152 |
+
w_end += (w_jitter + w_jitter_range)
|
153 |
+
|
154 |
+
views.append((h_start, h_end, w_start, w_end))
|
155 |
+
return views
|
156 |
+
|
157 |
+
def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3):
|
158 |
+
x_coord = torch.arange(kernel_size)
|
159 |
+
gaussian_1d = torch.exp(-(x_coord - (kernel_size - 1) / 2) ** 2 / (2 * sigma ** 2))
|
160 |
+
gaussian_1d = gaussian_1d / gaussian_1d.sum()
|
161 |
+
gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :]
|
162 |
+
kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1)
|
163 |
+
|
164 |
+
return kernel
|
165 |
+
|
166 |
+
def gaussian_filter(latents, kernel_size=3, sigma=1.0):
|
167 |
+
channels = latents.shape[1]
|
168 |
+
kernel = gaussian_kernel(kernel_size, sigma, channels).to(latents.device, latents.dtype)
|
169 |
+
if len(latents.shape) == 5:
|
170 |
+
b = latents.shape[0]
|
171 |
+
latents = rearrange(latents, 'b c t i j -> (b t) c i j')
|
172 |
+
blurred_latents = F.conv2d(latents, kernel, padding=kernel_size//2, groups=channels)
|
173 |
+
blurred_latents = rearrange(blurred_latents, '(b t) c i j -> b c t i j', b=b)
|
174 |
+
else:
|
175 |
+
blurred_latents = F.conv2d(latents, kernel, padding=kernel_size//2, groups=channels)
|
176 |
+
|
177 |
+
return blurred_latents
|
178 |
+
|
179 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
180 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
181 |
+
"""
|
182 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
183 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
184 |
+
"""
|
185 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
186 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
187 |
+
# rescale the results from guidance (fixes overexposure)
|
188 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
189 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
190 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
191 |
+
return noise_cfg
|
192 |
+
|
193 |
+
|
194 |
+
class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin):
|
195 |
+
r"""
|
196 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
197 |
+
|
198 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
199 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
200 |
+
|
201 |
+
In addition the pipeline inherits the following loading methods:
|
202 |
+
- *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`]
|
203 |
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
204 |
+
|
205 |
+
as well as the following saving methods:
|
206 |
+
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
|
207 |
+
|
208 |
+
Args:
|
209 |
+
vae ([`AutoencoderKL`]):
|
210 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
211 |
+
text_encoder ([`CLIPTextModel`]):
|
212 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
213 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
214 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
215 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
216 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
217 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
218 |
+
specifically the
|
219 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
220 |
+
variant.
|
221 |
+
tokenizer (`CLIPTokenizer`):
|
222 |
+
Tokenizer of class
|
223 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
224 |
+
tokenizer_2 (`CLIPTokenizer`):
|
225 |
+
Second Tokenizer of class
|
226 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
227 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
228 |
+
scheduler ([`SchedulerMixin`]):
|
229 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
230 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
231 |
+
"""
|
232 |
+
|
233 |
+
def __init__(
|
234 |
+
self,
|
235 |
+
vae: AutoencoderKL,
|
236 |
+
text_encoder: CLIPTextModel,
|
237 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
238 |
+
tokenizer: CLIPTokenizer,
|
239 |
+
tokenizer_2: CLIPTokenizer,
|
240 |
+
unet: UNet2DConditionModel,
|
241 |
+
scheduler: KarrasDiffusionSchedulers,
|
242 |
+
force_zeros_for_empty_prompt: bool = True,
|
243 |
+
add_watermarker: Optional[bool] = None,
|
244 |
+
):
|
245 |
+
super().__init__()
|
246 |
+
|
247 |
+
self.register_modules(
|
248 |
+
vae=vae,
|
249 |
+
text_encoder=text_encoder,
|
250 |
+
text_encoder_2=text_encoder_2,
|
251 |
+
tokenizer=tokenizer,
|
252 |
+
tokenizer_2=tokenizer_2,
|
253 |
+
unet=unet,
|
254 |
+
scheduler=scheduler,
|
255 |
+
)
|
256 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
257 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
258 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
259 |
+
self.default_sample_size = self.unet.config.sample_size
|
260 |
+
|
261 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
262 |
+
|
263 |
+
if add_watermarker:
|
264 |
+
self.watermark = StableDiffusionXLWatermarker()
|
265 |
+
else:
|
266 |
+
self.watermark = None
|
267 |
+
|
268 |
+
self.vae.enable_tiling()
|
269 |
+
|
270 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
271 |
+
def enable_vae_slicing(self):
|
272 |
+
r"""
|
273 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
274 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
275 |
+
"""
|
276 |
+
self.vae.enable_slicing()
|
277 |
+
|
278 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
279 |
+
def disable_vae_slicing(self):
|
280 |
+
r"""
|
281 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
282 |
+
computing decoding in one step.
|
283 |
+
"""
|
284 |
+
self.vae.disable_slicing()
|
285 |
+
|
286 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
287 |
+
def enable_vae_tiling(self):
|
288 |
+
r"""
|
289 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
290 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
291 |
+
processing larger images.
|
292 |
+
"""
|
293 |
+
self.vae.enable_tiling()
|
294 |
+
|
295 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
296 |
+
def disable_vae_tiling(self):
|
297 |
+
r"""
|
298 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
299 |
+
computing decoding in one step.
|
300 |
+
"""
|
301 |
+
self.vae.disable_tiling()
|
302 |
+
|
303 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
304 |
+
r"""
|
305 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
306 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
307 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
308 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
309 |
+
"""
|
310 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
311 |
+
from accelerate import cpu_offload_with_hook
|
312 |
+
else:
|
313 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
314 |
+
|
315 |
+
device = torch.device(f"cuda:{gpu_id}")
|
316 |
+
|
317 |
+
if self.device.type != "cpu":
|
318 |
+
self.to("cpu", silence_dtype_warnings=True)
|
319 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
320 |
+
|
321 |
+
model_sequence = (
|
322 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
323 |
+
)
|
324 |
+
model_sequence.extend([self.unet, self.vae])
|
325 |
+
|
326 |
+
hook = None
|
327 |
+
for cpu_offloaded_model in model_sequence:
|
328 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
329 |
+
|
330 |
+
# We'll offload the last model manually.
|
331 |
+
self.final_offload_hook = hook
|
332 |
+
|
333 |
+
def encode_prompt(
|
334 |
+
self,
|
335 |
+
prompt: str,
|
336 |
+
prompt_2: Optional[str] = None,
|
337 |
+
device: Optional[torch.device] = None,
|
338 |
+
num_images_per_prompt: int = 1,
|
339 |
+
do_classifier_free_guidance: bool = True,
|
340 |
+
negative_prompt: Optional[str] = None,
|
341 |
+
negative_prompt_2: Optional[str] = None,
|
342 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
343 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
344 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
345 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
346 |
+
lora_scale: Optional[float] = None,
|
347 |
+
):
|
348 |
+
r"""
|
349 |
+
Encodes the prompt into text encoder hidden states.
|
350 |
+
|
351 |
+
Args:
|
352 |
+
prompt (`str` or `List[str]`, *optional*):
|
353 |
+
prompt to be encoded
|
354 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
355 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
356 |
+
used in both text-encoders
|
357 |
+
device: (`torch.device`):
|
358 |
+
torch device
|
359 |
+
num_images_per_prompt (`int`):
|
360 |
+
number of images that should be generated per prompt
|
361 |
+
do_classifier_free_guidance (`bool`):
|
362 |
+
whether to use classifier free guidance or not
|
363 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
364 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
365 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
366 |
+
less than `1`).
|
367 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
368 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
369 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
370 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
371 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
372 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
373 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
374 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
375 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
376 |
+
argument.
|
377 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
378 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
379 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
380 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
381 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
382 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
383 |
+
input argument.
|
384 |
+
lora_scale (`float`, *optional*):
|
385 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
386 |
+
"""
|
387 |
+
device = device or self._execution_device
|
388 |
+
|
389 |
+
# set lora scale so that monkey patched LoRA
|
390 |
+
# function of text encoder can correctly access it
|
391 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
392 |
+
self._lora_scale = lora_scale
|
393 |
+
|
394 |
+
if prompt is not None and isinstance(prompt, str):
|
395 |
+
batch_size = 1
|
396 |
+
elif prompt is not None and isinstance(prompt, list):
|
397 |
+
batch_size = len(prompt)
|
398 |
+
else:
|
399 |
+
batch_size = prompt_embeds.shape[0]
|
400 |
+
|
401 |
+
# Define tokenizers and text encoders
|
402 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
403 |
+
text_encoders = (
|
404 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
405 |
+
)
|
406 |
+
|
407 |
+
if prompt_embeds is None:
|
408 |
+
prompt_2 = prompt_2 or prompt
|
409 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
410 |
+
prompt_embeds_list = []
|
411 |
+
prompts = [prompt, prompt_2]
|
412 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
413 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
414 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
415 |
+
|
416 |
+
text_inputs = tokenizer(
|
417 |
+
prompt,
|
418 |
+
padding="max_length",
|
419 |
+
max_length=tokenizer.model_max_length,
|
420 |
+
truncation=True,
|
421 |
+
return_tensors="pt",
|
422 |
+
)
|
423 |
+
|
424 |
+
text_input_ids = text_inputs.input_ids
|
425 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
426 |
+
|
427 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
428 |
+
text_input_ids, untruncated_ids
|
429 |
+
):
|
430 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
431 |
+
logger.warning(
|
432 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
433 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
434 |
+
)
|
435 |
+
|
436 |
+
prompt_embeds = text_encoder(
|
437 |
+
text_input_ids.to(device),
|
438 |
+
output_hidden_states=True,
|
439 |
+
)
|
440 |
+
|
441 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
442 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
443 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
444 |
+
|
445 |
+
prompt_embeds_list.append(prompt_embeds)
|
446 |
+
|
447 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
448 |
+
|
449 |
+
# get unconditional embeddings for classifier free guidance
|
450 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
451 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
452 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
453 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
454 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
455 |
+
negative_prompt = negative_prompt or ""
|
456 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
457 |
+
|
458 |
+
uncond_tokens: List[str]
|
459 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
460 |
+
raise TypeError(
|
461 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
462 |
+
f" {type(prompt)}."
|
463 |
+
)
|
464 |
+
elif isinstance(negative_prompt, str):
|
465 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
466 |
+
elif batch_size != len(negative_prompt):
|
467 |
+
raise ValueError(
|
468 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
469 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
470 |
+
" the batch size of `prompt`."
|
471 |
+
)
|
472 |
+
else:
|
473 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
474 |
+
|
475 |
+
negative_prompt_embeds_list = []
|
476 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
477 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
478 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
479 |
+
|
480 |
+
max_length = prompt_embeds.shape[1]
|
481 |
+
uncond_input = tokenizer(
|
482 |
+
negative_prompt,
|
483 |
+
padding="max_length",
|
484 |
+
max_length=max_length,
|
485 |
+
truncation=True,
|
486 |
+
return_tensors="pt",
|
487 |
+
)
|
488 |
+
|
489 |
+
negative_prompt_embeds = text_encoder(
|
490 |
+
uncond_input.input_ids.to(device),
|
491 |
+
output_hidden_states=True,
|
492 |
+
)
|
493 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
494 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
495 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
496 |
+
|
497 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
498 |
+
|
499 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
500 |
+
|
501 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
502 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
503 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
504 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
505 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
506 |
+
|
507 |
+
if do_classifier_free_guidance:
|
508 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
509 |
+
seq_len = negative_prompt_embeds.shape[1]
|
510 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
511 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
512 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
513 |
+
|
514 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
515 |
+
bs_embed * num_images_per_prompt, -1
|
516 |
+
)
|
517 |
+
if do_classifier_free_guidance:
|
518 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
519 |
+
bs_embed * num_images_per_prompt, -1
|
520 |
+
)
|
521 |
+
|
522 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
523 |
+
|
524 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
525 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
526 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
527 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
528 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
529 |
+
# and should be between [0, 1]
|
530 |
+
|
531 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
532 |
+
extra_step_kwargs = {}
|
533 |
+
if accepts_eta:
|
534 |
+
extra_step_kwargs["eta"] = eta
|
535 |
+
|
536 |
+
# check if the scheduler accepts generator
|
537 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
538 |
+
if accepts_generator:
|
539 |
+
extra_step_kwargs["generator"] = generator
|
540 |
+
return extra_step_kwargs
|
541 |
+
|
542 |
+
def check_inputs(
|
543 |
+
self,
|
544 |
+
prompt,
|
545 |
+
prompt_2,
|
546 |
+
height,
|
547 |
+
width,
|
548 |
+
callback_steps,
|
549 |
+
negative_prompt=None,
|
550 |
+
negative_prompt_2=None,
|
551 |
+
prompt_embeds=None,
|
552 |
+
negative_prompt_embeds=None,
|
553 |
+
pooled_prompt_embeds=None,
|
554 |
+
negative_pooled_prompt_embeds=None,
|
555 |
+
):
|
556 |
+
if height % 8 != 0 or width % 8 != 0:
|
557 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
558 |
+
|
559 |
+
if (callback_steps is None) or (
|
560 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
561 |
+
):
|
562 |
+
raise ValueError(
|
563 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
564 |
+
f" {type(callback_steps)}."
|
565 |
+
)
|
566 |
+
|
567 |
+
if prompt is not None and prompt_embeds is not None:
|
568 |
+
raise ValueError(
|
569 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
570 |
+
" only forward one of the two."
|
571 |
+
)
|
572 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
573 |
+
raise ValueError(
|
574 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
575 |
+
" only forward one of the two."
|
576 |
+
)
|
577 |
+
elif prompt is None and prompt_embeds is None:
|
578 |
+
raise ValueError(
|
579 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
580 |
+
)
|
581 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
582 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
583 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
584 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
585 |
+
|
586 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
587 |
+
raise ValueError(
|
588 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
589 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
590 |
+
)
|
591 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
592 |
+
raise ValueError(
|
593 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
594 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
595 |
+
)
|
596 |
+
|
597 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
598 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
599 |
+
raise ValueError(
|
600 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
601 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
602 |
+
f" {negative_prompt_embeds.shape}."
|
603 |
+
)
|
604 |
+
|
605 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
606 |
+
raise ValueError(
|
607 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
608 |
+
)
|
609 |
+
|
610 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
611 |
+
raise ValueError(
|
612 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
613 |
+
)
|
614 |
+
|
615 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
616 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
617 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
618 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
619 |
+
raise ValueError(
|
620 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
621 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
622 |
+
)
|
623 |
+
|
624 |
+
if latents is None:
|
625 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
626 |
+
else:
|
627 |
+
latents = latents.to(device)
|
628 |
+
|
629 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
630 |
+
latents = latents * self.scheduler.init_noise_sigma
|
631 |
+
return latents
|
632 |
+
|
633 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
634 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
635 |
+
|
636 |
+
passed_add_embed_dim = (
|
637 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
|
638 |
+
)
|
639 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
640 |
+
|
641 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
642 |
+
raise ValueError(
|
643 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
644 |
+
)
|
645 |
+
|
646 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
647 |
+
return add_time_ids
|
648 |
+
|
649 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
650 |
+
def upcast_vae(self):
|
651 |
+
dtype = self.vae.dtype
|
652 |
+
self.vae.to(dtype=torch.float32)
|
653 |
+
use_torch_2_0_or_xformers = isinstance(
|
654 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
655 |
+
(
|
656 |
+
AttnProcessor2_0,
|
657 |
+
XFormersAttnProcessor,
|
658 |
+
LoRAXFormersAttnProcessor,
|
659 |
+
LoRAAttnProcessor2_0,
|
660 |
+
),
|
661 |
+
)
|
662 |
+
# if xformers or torch_2_0 is used attention block does not need
|
663 |
+
# to be in float32 which can save lots of memory
|
664 |
+
if use_torch_2_0_or_xformers:
|
665 |
+
self.vae.post_quant_conv.to(dtype)
|
666 |
+
self.vae.decoder.conv_in.to(dtype)
|
667 |
+
self.vae.decoder.mid_block.to(dtype)
|
668 |
+
|
669 |
+
@torch.no_grad()
|
670 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
671 |
+
def __call__(
|
672 |
+
self,
|
673 |
+
prompt: Union[str, List[str]] = None,
|
674 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
675 |
+
height: Optional[int] = None,
|
676 |
+
width: Optional[int] = None,
|
677 |
+
num_inference_steps: int = 50,
|
678 |
+
denoising_end: Optional[float] = None,
|
679 |
+
guidance_scale: float = 5.0,
|
680 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
681 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
682 |
+
num_images_per_prompt: Optional[int] = 1,
|
683 |
+
eta: float = 0.0,
|
684 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
685 |
+
latents: Optional[torch.FloatTensor] = None,
|
686 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
687 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
688 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
689 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
690 |
+
output_type: Optional[str] = "pil",
|
691 |
+
return_dict: bool = True,
|
692 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
693 |
+
callback_steps: int = 1,
|
694 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
695 |
+
guidance_rescale: float = 0.0,
|
696 |
+
original_size: Optional[Tuple[int, int]] = None,
|
697 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
698 |
+
target_size: Optional[Tuple[int, int]] = None,
|
699 |
+
resolutions_list: Optional[Union[int, List[int]]] = None,
|
700 |
+
restart_steps: Optional[Union[int, List[int]]] = None,
|
701 |
+
cosine_scale: float = 2.0,
|
702 |
+
dilate_tau: int = 35,
|
703 |
+
fast_mode: bool = False,
|
704 |
+
):
|
705 |
+
r"""
|
706 |
+
Function invoked when calling the pipeline for generation.
|
707 |
+
|
708 |
+
Args:
|
709 |
+
prompt (`str` or `List[str]`, *optional*):
|
710 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
711 |
+
instead.
|
712 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
713 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
714 |
+
used in both text-encoders
|
715 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
716 |
+
The height in pixels of the generated image.
|
717 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
718 |
+
The width in pixels of the generated image.
|
719 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
720 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
721 |
+
expense of slower inference.
|
722 |
+
denoising_end (`float`, *optional*):
|
723 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
724 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
725 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
726 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
727 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
728 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
729 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
730 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
731 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
732 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
733 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
734 |
+
usually at the expense of lower image quality.
|
735 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
736 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
737 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
738 |
+
less than `1`).
|
739 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
740 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
741 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
742 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
743 |
+
The number of images to generate per prompt.
|
744 |
+
eta (`float`, *optional*, defaults to 0.0):
|
745 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
746 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
747 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
748 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
749 |
+
to make generation deterministic.
|
750 |
+
latents (`torch.FloatTensor`, *optional*):
|
751 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
752 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
753 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
754 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
755 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
756 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
757 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
758 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
759 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
760 |
+
argument.
|
761 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
762 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
763 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
764 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
765 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
766 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
767 |
+
input argument.
|
768 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
769 |
+
The output format of the generate image. Choose between
|
770 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
771 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
772 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
773 |
+
of a plain tuple.
|
774 |
+
callback (`Callable`, *optional*):
|
775 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
776 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
777 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
778 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
779 |
+
called at every step.
|
780 |
+
cross_attention_kwargs (`dict`, *optional*):
|
781 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
782 |
+
`self.processor` in
|
783 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
784 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
785 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
786 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
787 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
788 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
789 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
790 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
791 |
+
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
792 |
+
explained in section 2.2 of
|
793 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
794 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
795 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
796 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
797 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
798 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
799 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
800 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
801 |
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
802 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
803 |
+
|
804 |
+
Examples:
|
805 |
+
|
806 |
+
Returns:
|
807 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
808 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
809 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
810 |
+
"""
|
811 |
+
|
812 |
+
|
813 |
+
# 0. Default height and width to unet
|
814 |
+
if resolutions_list:
|
815 |
+
height, width = resolutions_list[0]
|
816 |
+
target_sizes = resolutions_list[1:]
|
817 |
+
if not restart_steps:
|
818 |
+
restart_steps = [1] * len(target_sizes)
|
819 |
+
else:
|
820 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
821 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
822 |
+
|
823 |
+
original_size = original_size or (height, width)
|
824 |
+
target_size = target_size or (height, width)
|
825 |
+
|
826 |
+
# 1. Check inputs. Raise error if not correct
|
827 |
+
self.check_inputs(
|
828 |
+
prompt,
|
829 |
+
prompt_2,
|
830 |
+
height,
|
831 |
+
width,
|
832 |
+
callback_steps,
|
833 |
+
negative_prompt,
|
834 |
+
negative_prompt_2,
|
835 |
+
prompt_embeds,
|
836 |
+
negative_prompt_embeds,
|
837 |
+
pooled_prompt_embeds,
|
838 |
+
negative_pooled_prompt_embeds,
|
839 |
+
)
|
840 |
+
|
841 |
+
# 2. Define call parameters
|
842 |
+
if prompt is not None and isinstance(prompt, str):
|
843 |
+
batch_size = 1
|
844 |
+
elif prompt is not None and isinstance(prompt, list):
|
845 |
+
batch_size = len(prompt)
|
846 |
+
else:
|
847 |
+
batch_size = prompt_embeds.shape[0]
|
848 |
+
|
849 |
+
device = self._execution_device
|
850 |
+
|
851 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
852 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
853 |
+
# corresponds to doing no classifier free guidance.
|
854 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
855 |
+
|
856 |
+
# 3. Encode input prompt
|
857 |
+
text_encoder_lora_scale = (
|
858 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
859 |
+
)
|
860 |
+
(
|
861 |
+
prompt_embeds,
|
862 |
+
negative_prompt_embeds,
|
863 |
+
pooled_prompt_embeds,
|
864 |
+
negative_pooled_prompt_embeds,
|
865 |
+
) = self.encode_prompt(
|
866 |
+
prompt=prompt,
|
867 |
+
prompt_2=prompt_2,
|
868 |
+
device=device,
|
869 |
+
num_images_per_prompt=num_images_per_prompt,
|
870 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
871 |
+
negative_prompt=negative_prompt,
|
872 |
+
negative_prompt_2=negative_prompt_2,
|
873 |
+
prompt_embeds=prompt_embeds,
|
874 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
875 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
876 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
877 |
+
lora_scale=text_encoder_lora_scale,
|
878 |
+
)
|
879 |
+
|
880 |
+
# 4. Prepare timesteps
|
881 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
882 |
+
|
883 |
+
timesteps = self.scheduler.timesteps
|
884 |
+
|
885 |
+
# 5. Prepare latent variables
|
886 |
+
num_channels_latents = self.unet.config.in_channels
|
887 |
+
latents = self.prepare_latents(
|
888 |
+
batch_size * num_images_per_prompt,
|
889 |
+
num_channels_latents,
|
890 |
+
height,
|
891 |
+
width,
|
892 |
+
prompt_embeds.dtype,
|
893 |
+
device,
|
894 |
+
generator,
|
895 |
+
latents,
|
896 |
+
)
|
897 |
+
|
898 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
899 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
900 |
+
|
901 |
+
# 7. Prepare added time ids & embeddings
|
902 |
+
add_text_embeds = pooled_prompt_embeds
|
903 |
+
add_time_ids = self._get_add_time_ids(
|
904 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
905 |
+
)
|
906 |
+
|
907 |
+
if do_classifier_free_guidance:
|
908 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
909 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
910 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
911 |
+
|
912 |
+
prompt_embeds = prompt_embeds.to(device)
|
913 |
+
add_text_embeds = add_text_embeds.to(device)
|
914 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
915 |
+
|
916 |
+
# 8. Denoising loop
|
917 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
918 |
+
|
919 |
+
# 9.1 Apply denoising_end
|
920 |
+
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
921 |
+
discrete_timestep_cutoff = int(
|
922 |
+
round(
|
923 |
+
self.scheduler.config.num_train_timesteps
|
924 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
925 |
+
)
|
926 |
+
)
|
927 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
928 |
+
timesteps = timesteps[:num_inference_steps]
|
929 |
+
|
930 |
+
for block in self.unet.down_blocks + [self.unet.mid_block] + self.unet.up_blocks:
|
931 |
+
for module in block.modules():
|
932 |
+
if isinstance(module, BasicTransformerBlock):
|
933 |
+
module.forward = ori_forward.__get__(module, BasicTransformerBlock)
|
934 |
+
|
935 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
936 |
+
for i, t in enumerate(timesteps):
|
937 |
+
# expand the latents if we are doing classifier free guidance
|
938 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
939 |
+
|
940 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
941 |
+
|
942 |
+
# predict the noise residual
|
943 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
944 |
+
noise_pred = self.unet(
|
945 |
+
latent_model_input,
|
946 |
+
t,
|
947 |
+
encoder_hidden_states=prompt_embeds,
|
948 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
949 |
+
added_cond_kwargs=added_cond_kwargs,
|
950 |
+
return_dict=False,
|
951 |
+
)[0]
|
952 |
+
|
953 |
+
# perform guidance
|
954 |
+
if do_classifier_free_guidance:
|
955 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
956 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
957 |
+
|
958 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
959 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
960 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
961 |
+
|
962 |
+
# compute the previous noisy sample x_t -> x_t-1
|
963 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
964 |
+
|
965 |
+
# call the callback, if provided
|
966 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
967 |
+
progress_bar.update()
|
968 |
+
if callback is not None and i % callback_steps == 0:
|
969 |
+
callback(i, t, latents)
|
970 |
+
|
971 |
+
for restart_index, target_size in enumerate(target_sizes):
|
972 |
+
restart_step = restart_steps[restart_index]
|
973 |
+
target_size_ = [target_size[0]//8, target_size[1]//8]
|
974 |
+
|
975 |
+
for block in self.unet.down_blocks + [self.unet.mid_block] + self.unet.up_blocks:
|
976 |
+
for module in block.modules():
|
977 |
+
if isinstance(module, BasicTransformerBlock):
|
978 |
+
module.forward = scale_forward.__get__(module, BasicTransformerBlock)
|
979 |
+
module.current_hw = target_size
|
980 |
+
module.fast_mode = fast_mode
|
981 |
+
|
982 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
983 |
+
if needs_upcasting:
|
984 |
+
self.upcast_vae()
|
985 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
986 |
+
|
987 |
+
latents = latents / self.vae.config.scaling_factor
|
988 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
989 |
+
image = torch.nn.functional.interpolate(
|
990 |
+
image,
|
991 |
+
size=target_size,
|
992 |
+
mode='bicubic',
|
993 |
+
)
|
994 |
+
latents = self.vae.encode(image).latent_dist.sample().half()
|
995 |
+
latents = latents * self.vae.config.scaling_factor
|
996 |
+
|
997 |
+
noise_latents = []
|
998 |
+
noise = torch.randn_like(latents)
|
999 |
+
for timestep in self.scheduler.timesteps:
|
1000 |
+
noise_latent = self.scheduler.add_noise(latents, noise, timestep.unsqueeze(0))
|
1001 |
+
noise_latents.append(noise_latent)
|
1002 |
+
latents = noise_latents[restart_step]
|
1003 |
+
|
1004 |
+
self.scheduler._step_index = 0
|
1005 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1006 |
+
for i, t in enumerate(timesteps):
|
1007 |
+
|
1008 |
+
if i < restart_step:
|
1009 |
+
self.scheduler._step_index += 1
|
1010 |
+
progress_bar.update()
|
1011 |
+
continue
|
1012 |
+
|
1013 |
+
cosine_factor = 0.5 * (1 + torch.cos(torch.pi * (self.scheduler.config.num_train_timesteps - t) / self.scheduler.config.num_train_timesteps)).cpu()
|
1014 |
+
c1 = cosine_factor ** cosine_scale
|
1015 |
+
latents = latents * (1 - c1) + noise_latents[i] * c1
|
1016 |
+
|
1017 |
+
dilate_coef=target_size[1]//1024
|
1018 |
+
|
1019 |
+
dilate_layers = [
|
1020 |
+
# "down_blocks.1.resnets.0.conv1",
|
1021 |
+
# "down_blocks.1.resnets.0.conv2",
|
1022 |
+
# "down_blocks.1.resnets.1.conv1",
|
1023 |
+
# "down_blocks.1.resnets.1.conv2",
|
1024 |
+
"down_blocks.1.downsamplers.0.conv",
|
1025 |
+
"down_blocks.2.resnets.0.conv1",
|
1026 |
+
"down_blocks.2.resnets.0.conv2",
|
1027 |
+
"down_blocks.2.resnets.1.conv1",
|
1028 |
+
"down_blocks.2.resnets.1.conv2",
|
1029 |
+
# "up_blocks.0.resnets.0.conv1",
|
1030 |
+
# "up_blocks.0.resnets.0.conv2",
|
1031 |
+
# "up_blocks.0.resnets.1.conv1",
|
1032 |
+
# "up_blocks.0.resnets.1.conv2",
|
1033 |
+
# "up_blocks.0.resnets.2.conv1",
|
1034 |
+
# "up_blocks.0.resnets.2.conv2",
|
1035 |
+
# "up_blocks.0.upsamplers.0.conv",
|
1036 |
+
# "up_blocks.1.resnets.0.conv1",
|
1037 |
+
# "up_blocks.1.resnets.0.conv2",
|
1038 |
+
# "up_blocks.1.resnets.1.conv1",
|
1039 |
+
# "up_blocks.1.resnets.1.conv2",
|
1040 |
+
# "up_blocks.1.resnets.2.conv1",
|
1041 |
+
# "up_blocks.1.resnets.2.conv2",
|
1042 |
+
# "up_blocks.1.upsamplers.0.conv",
|
1043 |
+
# "up_blocks.2.resnets.0.conv1",
|
1044 |
+
# "up_blocks.2.resnets.0.conv2",
|
1045 |
+
# "up_blocks.2.resnets.1.conv1",
|
1046 |
+
# "up_blocks.2.resnets.1.conv2",
|
1047 |
+
# "up_blocks.2.resnets.2.conv1",
|
1048 |
+
# "up_blocks.2.resnets.2.conv2",
|
1049 |
+
"mid_block.resnets.0.conv1",
|
1050 |
+
"mid_block.resnets.0.conv2",
|
1051 |
+
"mid_block.resnets.1.conv1",
|
1052 |
+
"mid_block.resnets.1.conv2"
|
1053 |
+
]
|
1054 |
+
|
1055 |
+
for name, module in self.unet.named_modules():
|
1056 |
+
if name in dilate_layers:
|
1057 |
+
if i < dilate_tau:
|
1058 |
+
module.dilation = (dilate_coef, dilate_coef)
|
1059 |
+
module.padding = (dilate_coef, dilate_coef)
|
1060 |
+
else:
|
1061 |
+
module.dilation = (1, 1)
|
1062 |
+
module.padding = (1, 1)
|
1063 |
+
|
1064 |
+
# expand the latents if we are doing classifier free guidance
|
1065 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1066 |
+
|
1067 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1068 |
+
|
1069 |
+
|
1070 |
+
# predict the noise residual
|
1071 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1072 |
+
noise_pred = self.unet(
|
1073 |
+
latent_model_input,
|
1074 |
+
t,
|
1075 |
+
encoder_hidden_states=prompt_embeds,
|
1076 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1077 |
+
added_cond_kwargs=added_cond_kwargs,
|
1078 |
+
return_dict=False,
|
1079 |
+
)[0]
|
1080 |
+
|
1081 |
+
# perform guidance
|
1082 |
+
if do_classifier_free_guidance:
|
1083 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1084 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1085 |
+
|
1086 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1087 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1088 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1089 |
+
|
1090 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1091 |
+
latents_dtype = latents.dtype
|
1092 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1093 |
+
if latents.dtype != latents_dtype:
|
1094 |
+
if torch.backends.mps.is_available():
|
1095 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1096 |
+
latents = latents.to(latents_dtype)
|
1097 |
+
|
1098 |
+
# call the callback, if provided
|
1099 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1100 |
+
progress_bar.update()
|
1101 |
+
if callback is not None and i % callback_steps == 0:
|
1102 |
+
callback(i, t, latents)
|
1103 |
+
|
1104 |
+
for name, module in self.unet.named_modules():
|
1105 |
+
# if ('.conv' in name) and ('.conv_' not in name):
|
1106 |
+
if name in dilate_layers:
|
1107 |
+
module.dilation = (1, 1)
|
1108 |
+
module.padding = (1, 1)
|
1109 |
+
|
1110 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1111 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
1112 |
+
self.upcast_vae()
|
1113 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1114 |
+
|
1115 |
+
if not output_type == "latent":
|
1116 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1117 |
+
else:
|
1118 |
+
image = latents
|
1119 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
1120 |
+
|
1121 |
+
# apply watermark if available
|
1122 |
+
if self.watermark is not None:
|
1123 |
+
image = self.watermark.apply_watermark(image)
|
1124 |
+
|
1125 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1126 |
+
|
1127 |
+
# Offload last model to CPU
|
1128 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1129 |
+
self.final_offload_hook.offload()
|
1130 |
+
|
1131 |
+
if not return_dict:
|
1132 |
+
return (image,)
|
1133 |
+
|
1134 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
1135 |
+
|
1136 |
+
# Overrride to properly handle the loading and unloading of the additional text encoder.
|
1137 |
+
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
|
1138 |
+
# We could have accessed the unet config from `lora_state_dict()` too. We pass
|
1139 |
+
# it here explicitly to be able to tell that it's coming from an SDXL
|
1140 |
+
# pipeline.
|
1141 |
+
state_dict, network_alphas = self.lora_state_dict(
|
1142 |
+
pretrained_model_name_or_path_or_dict,
|
1143 |
+
unet_config=self.unet.config,
|
1144 |
+
**kwargs,
|
1145 |
+
)
|
1146 |
+
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
|
1147 |
+
|
1148 |
+
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
|
1149 |
+
if len(text_encoder_state_dict) > 0:
|
1150 |
+
self.load_lora_into_text_encoder(
|
1151 |
+
text_encoder_state_dict,
|
1152 |
+
network_alphas=network_alphas,
|
1153 |
+
text_encoder=self.text_encoder,
|
1154 |
+
prefix="text_encoder",
|
1155 |
+
lora_scale=self.lora_scale,
|
1156 |
+
)
|
1157 |
+
|
1158 |
+
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
|
1159 |
+
if len(text_encoder_2_state_dict) > 0:
|
1160 |
+
self.load_lora_into_text_encoder(
|
1161 |
+
text_encoder_2_state_dict,
|
1162 |
+
network_alphas=network_alphas,
|
1163 |
+
text_encoder=self.text_encoder_2,
|
1164 |
+
prefix="text_encoder_2",
|
1165 |
+
lora_scale=self.lora_scale,
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
@classmethod
|
1169 |
+
def save_lora_weights(
|
1170 |
+
self,
|
1171 |
+
save_directory: Union[str, os.PathLike],
|
1172 |
+
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1173 |
+
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1174 |
+
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1175 |
+
is_main_process: bool = True,
|
1176 |
+
weight_name: str = None,
|
1177 |
+
save_function: Callable = None,
|
1178 |
+
safe_serialization: bool = True,
|
1179 |
+
):
|
1180 |
+
state_dict = {}
|
1181 |
+
|
1182 |
+
def pack_weights(layers, prefix):
|
1183 |
+
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
|
1184 |
+
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
|
1185 |
+
return layers_state_dict
|
1186 |
+
|
1187 |
+
state_dict.update(pack_weights(unet_lora_layers, "unet"))
|
1188 |
+
|
1189 |
+
if text_encoder_lora_layers and text_encoder_2_lora_layers:
|
1190 |
+
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
|
1191 |
+
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
|
1192 |
+
|
1193 |
+
self.write_lora_layers(
|
1194 |
+
state_dict=state_dict,
|
1195 |
+
save_directory=save_directory,
|
1196 |
+
is_main_process=is_main_process,
|
1197 |
+
weight_name=weight_name,
|
1198 |
+
save_function=save_function,
|
1199 |
+
safe_serialization=safe_serialization,
|
1200 |
+
)
|
1201 |
+
|
1202 |
+
def _remove_text_encoder_monkey_patch(self):
|
1203 |
+
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
|
1204 |
+
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
|
scale_attention_turbo.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
import random
|
8 |
+
|
9 |
+
def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3):
|
10 |
+
x_coord = torch.arange(kernel_size)
|
11 |
+
gaussian_1d = torch.exp(-(x_coord - (kernel_size - 1) / 2) ** 2 / (2 * sigma ** 2))
|
12 |
+
gaussian_1d = gaussian_1d / gaussian_1d.sum()
|
13 |
+
gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :]
|
14 |
+
kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1)
|
15 |
+
|
16 |
+
return kernel
|
17 |
+
|
18 |
+
def gaussian_filter(latents, kernel_size=3, sigma=1.0):
|
19 |
+
channels = latents.shape[1]
|
20 |
+
kernel = gaussian_kernel(kernel_size, sigma, channels).to(latents.device, latents.dtype)
|
21 |
+
blurred_latents = F.conv2d(latents, kernel, padding=kernel_size//2, groups=channels)
|
22 |
+
|
23 |
+
return blurred_latents
|
24 |
+
|
25 |
+
def get_views(height, width, h_window_size=64, w_window_size=64, scale_factor=8):
|
26 |
+
height = int(height)
|
27 |
+
width = int(width)
|
28 |
+
h_window_stride = h_window_size // 2
|
29 |
+
w_window_stride = w_window_size // 2
|
30 |
+
h_window_size = int(h_window_size / scale_factor)
|
31 |
+
w_window_size = int(w_window_size / scale_factor)
|
32 |
+
h_window_stride = int(h_window_stride / scale_factor)
|
33 |
+
w_window_stride = int(w_window_stride / scale_factor)
|
34 |
+
num_blocks_height = int((height - h_window_size) / h_window_stride - 1e-6) + 2 if height > h_window_size else 1
|
35 |
+
num_blocks_width = int((width - w_window_size) / w_window_stride - 1e-6) + 2 if width > w_window_size else 1
|
36 |
+
total_num_blocks = int(num_blocks_height * num_blocks_width)
|
37 |
+
views = []
|
38 |
+
for i in range(total_num_blocks):
|
39 |
+
h_start = int((i // num_blocks_width) * h_window_stride)
|
40 |
+
h_end = h_start + h_window_size
|
41 |
+
w_start = int((i % num_blocks_width) * w_window_stride)
|
42 |
+
w_end = w_start + w_window_size
|
43 |
+
|
44 |
+
if h_end > height:
|
45 |
+
h_start = int(h_start + height - h_end)
|
46 |
+
h_end = int(height)
|
47 |
+
if w_end > width:
|
48 |
+
w_start = int(w_start + width - w_end)
|
49 |
+
w_end = int(width)
|
50 |
+
if h_start < 0:
|
51 |
+
h_end = int(h_end - h_start)
|
52 |
+
h_start = 0
|
53 |
+
if w_start < 0:
|
54 |
+
w_end = int(w_end - w_start)
|
55 |
+
w_start = 0
|
56 |
+
|
57 |
+
random_jitter = True
|
58 |
+
if random_jitter:
|
59 |
+
h_jitter_range = h_window_size // 8
|
60 |
+
w_jitter_range = w_window_size // 8
|
61 |
+
h_jitter = 0
|
62 |
+
w_jitter = 0
|
63 |
+
|
64 |
+
if (w_start != 0) and (w_end != width):
|
65 |
+
w_jitter = random.randint(-w_jitter_range, w_jitter_range)
|
66 |
+
elif (w_start == 0) and (w_end != width):
|
67 |
+
w_jitter = random.randint(-w_jitter_range, 0)
|
68 |
+
elif (w_start != 0) and (w_end == width):
|
69 |
+
w_jitter = random.randint(0, w_jitter_range)
|
70 |
+
if (h_start != 0) and (h_end != height):
|
71 |
+
h_jitter = random.randint(-h_jitter_range, h_jitter_range)
|
72 |
+
elif (h_start == 0) and (h_end != height):
|
73 |
+
h_jitter = random.randint(-h_jitter_range, 0)
|
74 |
+
elif (h_start != 0) and (h_end == height):
|
75 |
+
h_jitter = random.randint(0, h_jitter_range)
|
76 |
+
h_start += (h_jitter + h_jitter_range)
|
77 |
+
h_end += (h_jitter + h_jitter_range)
|
78 |
+
w_start += (w_jitter + w_jitter_range)
|
79 |
+
w_end += (w_jitter + w_jitter_range)
|
80 |
+
|
81 |
+
views.append((h_start, h_end, w_start, w_end))
|
82 |
+
return views
|
83 |
+
|
84 |
+
def scale_forward(
|
85 |
+
self,
|
86 |
+
hidden_states: torch.FloatTensor,
|
87 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
88 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
89 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
90 |
+
timestep: Optional[torch.LongTensor] = None,
|
91 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
92 |
+
class_labels: Optional[torch.LongTensor] = None,
|
93 |
+
):
|
94 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
95 |
+
if self.current_hw:
|
96 |
+
current_scale_num_h, current_scale_num_w = self.current_hw[0] // 512, self.current_hw[1] // 512
|
97 |
+
else:
|
98 |
+
current_scale_num_h, current_scale_num_w = 1, 1
|
99 |
+
|
100 |
+
# 0. Self-Attention
|
101 |
+
if self.use_ada_layer_norm:
|
102 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
103 |
+
elif self.use_ada_layer_norm_zero:
|
104 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
105 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
norm_hidden_states = self.norm1(hidden_states)
|
109 |
+
|
110 |
+
# 2. Prepare GLIGEN inputs
|
111 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
112 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
113 |
+
|
114 |
+
ratio_hw = current_scale_num_h / current_scale_num_w
|
115 |
+
latent_h = int((norm_hidden_states.shape[1] * ratio_hw) ** 0.5)
|
116 |
+
latent_w = int(latent_h / ratio_hw)
|
117 |
+
scale_factor = 64 * current_scale_num_h / latent_h
|
118 |
+
if ratio_hw > 1:
|
119 |
+
sub_h = 64
|
120 |
+
sub_w = int(64 / ratio_hw)
|
121 |
+
else:
|
122 |
+
sub_h = int(64 * ratio_hw)
|
123 |
+
sub_w = 64
|
124 |
+
|
125 |
+
h_jitter_range = int(sub_h / scale_factor // 8)
|
126 |
+
w_jitter_range = int(sub_w / scale_factor // 8)
|
127 |
+
views = get_views(latent_h, latent_w, sub_h, sub_w, scale_factor = scale_factor)
|
128 |
+
|
129 |
+
current_scale_num = max(current_scale_num_h, current_scale_num_w)
|
130 |
+
global_views = [[h, w] for h in range(current_scale_num_h) for w in range(current_scale_num_w)]
|
131 |
+
|
132 |
+
if self.fast_mode:
|
133 |
+
four_window = False
|
134 |
+
fourg_window = True
|
135 |
+
else:
|
136 |
+
four_window = True
|
137 |
+
fourg_window = False
|
138 |
+
|
139 |
+
if four_window:
|
140 |
+
norm_hidden_states_ = rearrange(norm_hidden_states, 'bh (h w) d -> bh h w d', h = latent_h)
|
141 |
+
norm_hidden_states_ = F.pad(norm_hidden_states_, (0, 0, w_jitter_range, w_jitter_range, h_jitter_range, h_jitter_range), 'constant', 0)
|
142 |
+
value = torch.zeros_like(norm_hidden_states_)
|
143 |
+
count = torch.zeros_like(norm_hidden_states_)
|
144 |
+
for index, view in enumerate(views):
|
145 |
+
h_start, h_end, w_start, w_end = view
|
146 |
+
local_states = norm_hidden_states_[:, h_start:h_end, w_start:w_end, :]
|
147 |
+
local_states = rearrange(local_states, 'bh h w d -> bh (h w) d')
|
148 |
+
local_output = self.attn1(
|
149 |
+
local_states,
|
150 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
151 |
+
attention_mask=attention_mask,
|
152 |
+
**cross_attention_kwargs,
|
153 |
+
)
|
154 |
+
local_output = rearrange(local_output, 'bh (h w) d -> bh h w d', h = int(sub_h / scale_factor))
|
155 |
+
|
156 |
+
value[:, h_start:h_end, w_start:w_end, :] += local_output * 1
|
157 |
+
count[:, h_start:h_end, w_start:w_end, :] += 1
|
158 |
+
|
159 |
+
value = value[:, h_jitter_range:-h_jitter_range, w_jitter_range:-w_jitter_range, :]
|
160 |
+
count = count[:, h_jitter_range:-h_jitter_range, w_jitter_range:-w_jitter_range, :]
|
161 |
+
attn_output = torch.where(count>0, value/count, value)
|
162 |
+
|
163 |
+
gaussian_local = gaussian_filter(attn_output, kernel_size=(2*current_scale_num-1), sigma=1.0)
|
164 |
+
|
165 |
+
attn_output_global = self.attn1(
|
166 |
+
norm_hidden_states,
|
167 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
168 |
+
attention_mask=attention_mask,
|
169 |
+
**cross_attention_kwargs,
|
170 |
+
)
|
171 |
+
attn_output_global = rearrange(attn_output_global, 'bh (h w) d -> bh h w d', h = latent_h)
|
172 |
+
|
173 |
+
gaussian_global = gaussian_filter(attn_output_global, kernel_size=(2*current_scale_num-1), sigma=1.0)
|
174 |
+
|
175 |
+
attn_output = gaussian_local + (attn_output_global - gaussian_global)
|
176 |
+
attn_output = rearrange(attn_output, 'bh h w d -> bh (h w) d')
|
177 |
+
|
178 |
+
elif fourg_window:
|
179 |
+
norm_hidden_states = rearrange(norm_hidden_states, 'bh (h w) d -> bh h w d', h = latent_h)
|
180 |
+
norm_hidden_states_ = F.pad(norm_hidden_states, (0, 0, w_jitter_range, w_jitter_range, h_jitter_range, h_jitter_range), 'constant', 0)
|
181 |
+
value = torch.zeros_like(norm_hidden_states_)
|
182 |
+
count = torch.zeros_like(norm_hidden_states_)
|
183 |
+
for index, view in enumerate(views):
|
184 |
+
h_start, h_end, w_start, w_end = view
|
185 |
+
local_states = norm_hidden_states_[:, h_start:h_end, w_start:w_end, :]
|
186 |
+
local_states = rearrange(local_states, 'bh h w d -> bh (h w) d')
|
187 |
+
local_output = self.attn1(
|
188 |
+
local_states,
|
189 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
190 |
+
attention_mask=attention_mask,
|
191 |
+
**cross_attention_kwargs,
|
192 |
+
)
|
193 |
+
local_output = rearrange(local_output, 'bh (h w) d -> bh h w d', h = int(sub_h / scale_factor))
|
194 |
+
|
195 |
+
value[:, h_start:h_end, w_start:w_end, :] += local_output * 1
|
196 |
+
count[:, h_start:h_end, w_start:w_end, :] += 1
|
197 |
+
|
198 |
+
value = value[:, h_jitter_range:-h_jitter_range, w_jitter_range:-w_jitter_range, :]
|
199 |
+
count = count[:, h_jitter_range:-h_jitter_range, w_jitter_range:-w_jitter_range, :]
|
200 |
+
attn_output = torch.where(count>0, value/count, value)
|
201 |
+
|
202 |
+
gaussian_local = gaussian_filter(attn_output, kernel_size=(2*current_scale_num-1), sigma=1.0)
|
203 |
+
|
204 |
+
value = torch.zeros_like(norm_hidden_states)
|
205 |
+
count = torch.zeros_like(norm_hidden_states)
|
206 |
+
for index, global_view in enumerate(global_views):
|
207 |
+
h, w = global_view
|
208 |
+
global_states = norm_hidden_states[:, h::current_scale_num_h, w::current_scale_num_w, :]
|
209 |
+
global_states = rearrange(global_states, 'bh h w d -> bh (h w) d')
|
210 |
+
global_output = self.attn1(
|
211 |
+
global_states,
|
212 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
213 |
+
attention_mask=attention_mask,
|
214 |
+
**cross_attention_kwargs,
|
215 |
+
)
|
216 |
+
global_output = rearrange(global_output, 'bh (h w) d -> bh h w d', h = int(global_output.shape[1] ** 0.5))
|
217 |
+
|
218 |
+
value[:, h::current_scale_num_h, w::current_scale_num_w, :] += global_output * 1
|
219 |
+
count[:, h::current_scale_num_h, w::current_scale_num_w, :] += 1
|
220 |
+
|
221 |
+
attn_output_global = torch.where(count>0, value/count, value)
|
222 |
+
|
223 |
+
gaussian_global = gaussian_filter(attn_output_global, kernel_size=(2*current_scale_num-1), sigma=1.0)
|
224 |
+
|
225 |
+
attn_output = gaussian_local + (attn_output_global - gaussian_global)
|
226 |
+
attn_output = rearrange(attn_output, 'bh h w d -> bh (h w) d')
|
227 |
+
|
228 |
+
else:
|
229 |
+
attn_output = self.attn1(
|
230 |
+
norm_hidden_states,
|
231 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
232 |
+
attention_mask=attention_mask,
|
233 |
+
**cross_attention_kwargs,
|
234 |
+
)
|
235 |
+
|
236 |
+
if self.use_ada_layer_norm_zero:
|
237 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
238 |
+
hidden_states = attn_output + hidden_states
|
239 |
+
|
240 |
+
# 2.5 GLIGEN Control
|
241 |
+
if gligen_kwargs is not None:
|
242 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
243 |
+
# 2.5 ends
|
244 |
+
|
245 |
+
# 3. Cross-Attention
|
246 |
+
if self.attn2 is not None:
|
247 |
+
norm_hidden_states = (
|
248 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
249 |
+
)
|
250 |
+
attn_output = self.attn2(
|
251 |
+
norm_hidden_states,
|
252 |
+
encoder_hidden_states=encoder_hidden_states,
|
253 |
+
attention_mask=encoder_attention_mask,
|
254 |
+
**cross_attention_kwargs,
|
255 |
+
)
|
256 |
+
hidden_states = attn_output + hidden_states
|
257 |
+
|
258 |
+
# 4. Feed-forward
|
259 |
+
norm_hidden_states = self.norm3(hidden_states)
|
260 |
+
|
261 |
+
if self.use_ada_layer_norm_zero:
|
262 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
263 |
+
|
264 |
+
if self._chunk_size is not None:
|
265 |
+
# "feed_forward_chunk_size" can be used to save memory
|
266 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
267 |
+
raise ValueError(
|
268 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
269 |
+
)
|
270 |
+
|
271 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
272 |
+
ff_output = torch.cat(
|
273 |
+
[
|
274 |
+
self.ff(hid_slice)
|
275 |
+
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
|
276 |
+
],
|
277 |
+
dim=self._chunk_dim,
|
278 |
+
)
|
279 |
+
else:
|
280 |
+
ff_output = self.ff(norm_hidden_states)
|
281 |
+
|
282 |
+
if self.use_ada_layer_norm_zero:
|
283 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
284 |
+
|
285 |
+
hidden_states = ff_output + hidden_states
|
286 |
+
|
287 |
+
return hidden_states
|
288 |
+
|
289 |
+
def ori_forward(
|
290 |
+
self,
|
291 |
+
hidden_states: torch.FloatTensor,
|
292 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
293 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
294 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
295 |
+
timestep: Optional[torch.LongTensor] = None,
|
296 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
297 |
+
class_labels: Optional[torch.LongTensor] = None,
|
298 |
+
):
|
299 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
300 |
+
# 0. Self-Attention
|
301 |
+
if self.use_ada_layer_norm:
|
302 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
303 |
+
elif self.use_ada_layer_norm_zero:
|
304 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
305 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
norm_hidden_states = self.norm1(hidden_states)
|
309 |
+
|
310 |
+
# 2. Prepare GLIGEN inputs
|
311 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
312 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
313 |
+
|
314 |
+
attn_output = self.attn1(
|
315 |
+
norm_hidden_states,
|
316 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
317 |
+
attention_mask=attention_mask,
|
318 |
+
**cross_attention_kwargs,
|
319 |
+
)
|
320 |
+
|
321 |
+
if self.use_ada_layer_norm_zero:
|
322 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
323 |
+
hidden_states = attn_output + hidden_states
|
324 |
+
|
325 |
+
# 2.5 GLIGEN Control
|
326 |
+
if gligen_kwargs is not None:
|
327 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
328 |
+
# 2.5 ends
|
329 |
+
|
330 |
+
# 3. Cross-Attention
|
331 |
+
if self.attn2 is not None:
|
332 |
+
norm_hidden_states = (
|
333 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
334 |
+
)
|
335 |
+
attn_output = self.attn2(
|
336 |
+
norm_hidden_states,
|
337 |
+
encoder_hidden_states=encoder_hidden_states,
|
338 |
+
attention_mask=encoder_attention_mask,
|
339 |
+
**cross_attention_kwargs,
|
340 |
+
)
|
341 |
+
hidden_states = attn_output + hidden_states
|
342 |
+
|
343 |
+
# 4. Feed-forward
|
344 |
+
norm_hidden_states = self.norm3(hidden_states)
|
345 |
+
|
346 |
+
if self.use_ada_layer_norm_zero:
|
347 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
348 |
+
|
349 |
+
if self._chunk_size is not None:
|
350 |
+
# "feed_forward_chunk_size" can be used to save memory
|
351 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
352 |
+
raise ValueError(
|
353 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
354 |
+
)
|
355 |
+
|
356 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
357 |
+
ff_output = torch.cat(
|
358 |
+
[
|
359 |
+
self.ff(hid_slice)
|
360 |
+
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
|
361 |
+
],
|
362 |
+
dim=self._chunk_dim,
|
363 |
+
)
|
364 |
+
else:
|
365 |
+
ff_output = self.ff(norm_hidden_states)
|
366 |
+
|
367 |
+
if self.use_ada_layer_norm_zero:
|
368 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
369 |
+
|
370 |
+
hidden_states = ff_output + hidden_states
|
371 |
+
|
372 |
+
return hidden_states
|