#!/usr/bin/env python from __future__ import annotations import gradio as gr import PIL.Image import zipfile from genTag import genTag from checkIgnore import is_ignore from createTagDom import create_tag_dom def predict(image: PIL.Image.Image): result_threshold = genTag(image, 0.5) result_html = '' for label, prob in result_threshold.items(): result_html += create_tag_dom(label, is_ignore(label, 1), prob) result_html = '
' + result_html + '
' result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 1)} result_text = '
' + ', '.join(result_filter.keys()) + '
' return result_html, result_text def predict_batch(zip_file, progress=gr.Progress()): result = '' with zipfile.ZipFile(zip_file) as zf: for file in progress.tqdm(zf.namelist()): print(file) if file.endswith(".png") or file.endswith(".jpg") or file.endswith(".jpeg") or file.endswith(".webp"): image_file = zf.open(file) image = PIL.Image.open(image_file) image = image.convert("RGBA") result_threshold = genTag(image, 0.5) result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 2)} tag = ', '.join(result_filter.keys()) result = result + str(file) + '\n' + str(tag) + '\n\n' return result with gr.Blocks(head_paths="head.html") as demo: with gr.Tab(label='Single'): with gr.Row(): with gr.Column(scale=1): image = gr.Image(label='Upload a image', type='pil', elem_classes='m5dd_image', image_mode="RGBA", show_fullscreen_button=False, sources=["upload", "clipboard"]) run_button = gr.Button('Run') result_text = gr.HTML(value="", elem_classes='m5dd_html', padding=False) with gr.Column(scale=2): result_html = gr.HTML(value="", elem_classes='m5dd_html', padding=False) with gr.Tab(label='Batch'): with gr.Row(): with gr.Column(scale=1): batch_file = gr.File(label="Upload a ZIP file containing images", file_types=['.zip']) run_button2 = gr.Button('Run') with gr.Column(scale=2): result_text2 = gr.Textbox(lines=20, max_lines=20, label='Result', show_copy_button=True, autoscroll=False) run_button.click( fn=predict, inputs=[image], outputs=[result_html, result_text], api_name='predict', ) run_button2.click( fn=predict_batch, inputs=[batch_file], outputs=[result_text2], api_name='predict_batch', ) if __name__ == "__main__": demo.queue(max_size=20).launch()