MohamedRashad's picture
Refactor model ID handling and launch demo in app.py
2f44903
raw
history blame
8.25 kB
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
import gradio as gr
from threading import Thread
import subprocess
subprocess.run('pip install -U flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
models_available = [
"MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct",
"silma-ai/SILMA-9B-Instruct-v1.0",
"inceptionai/jais-adapted-7b-chat",
"inceptionai/jais-family-6p7b-chat",
"inceptionai/jais-family-2p7b-chat",
"inceptionai/jais-family-1p3b-chat",
"inceptionai/jais-family-590m-chat",
]
tokenizer_a, model_a = None, None
tokenizer_b, model_b = None, None
torch_dtype = torch.bfloat16
attn_implementation = "flash_attention_2"
def load_model_a(model_id):
global tokenizer_a, model_a
tokenizer_a = AutoTokenizer.from_pretrained(model_id)
print(f"model A: {tokenizer_a.eos_token}")
try:
model_a = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
attn_implementation=attn_implementation,
trust_remote_code=True,
).eval()
except Exception as e:
print(f"Using default attention implementation in {model_id}")
print(f"Error: {e}")
model_a = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
trust_remote_code=True,
).eval()
model_a.tie_weights()
return gr.update(label=model_id)
def load_model_b(model_id):
global tokenizer_b, model_b
tokenizer_b = AutoTokenizer.from_pretrained(model_id)
print(f"model B: {tokenizer_b.eos_token}")
try:
model_b = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
attn_implementation=attn_implementation,
trust_remote_code=True,
).eval()
except Exception as e:
print(f"Error: {e}")
print(f"Using default attention implementation in {model_id}")
model_b = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
trust_remote_code=True,
).eval()
model_b.tie_weights()
return gr.update(label=model_id)
@spaces.GPU()
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)
system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
input_text_list = [{"role": "user", "content": input_text}]
chat_history_a = []
for user, assistant in chatbot_a:
chat_history_a.append({"role": "user", "content": user})
chat_history_a.append({"role": "assistant", "content": assistant})
chat_history_b = []
for user, assistant in chatbot_b:
chat_history_b.append({"role": "user", "content": user})
chat_history_b.append({"role": "assistant", "content": assistant})
base_messages = system_prompt_list + chat_history_a + input_text_list
new_messages = system_prompt_list + chat_history_b + input_text_list
input_ids_a = tokenizer_a.apply_chat_template(
base_messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model_a.device)
input_ids_b = tokenizer_b.apply_chat_template(
new_messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model_b.device)
generation_kwargs_a = dict(
input_ids=input_ids_a,
streamer=text_streamer_a,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_a.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
generation_kwargs_b = dict(
input_ids=input_ids_b,
streamer=text_streamer_b,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_b.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)
thread_a.start()
thread_b.start()
chatbot_a.append([input_text, ""])
chatbot_b.append([input_text, ""])
finished_a = False
finished_b = False
while not (finished_a and finished_b):
if not finished_a:
try:
text_a = next(text_streamer_a)
if tokenizer_a.eos_token in text_a:
eot_location = text_a.find(tokenizer_a.eos_token)
text_a = text_a[:eot_location]
finished_a = True
chatbot_a[-1][-1] += text_a
yield chatbot_a, chatbot_b
except StopIteration:
finished_a = True
if not finished_b:
try:
text_b = next(text_streamer_b)
if tokenizer_b.eos_token in text_b:
eot_location = text_b.find(tokenizer_b.eos_token)
text_b = text_b[:eot_location]
finished_b = True
chatbot_b[-1][-1] += text_b
yield chatbot_a, chatbot_b
except StopIteration:
finished_b = True
return chatbot_a, chatbot_b
def clear():
return [], []
arena_notes = """## Important Notes:
- Sometimes an error may occur when generating the response, in this case, please try again.
"""
with gr.Blocks() as demo:
with gr.Column():
gr.HTML("<center><h1>Arabic Chatbot Comparison</h1></center>")
gr.Markdown(arena_notes)
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="أنت متحدث لبق باللغة العربية!", rtl=True, text_align="right", show_copy_button=True)
with gr.Row(variant="panel"):
with gr.Column():
model_dropdown_a = gr.Dropdown(label="Model A", choices=models_available, value=None)
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
with gr.Column():
model_dropdown_b = gr.Dropdown(label="Model B", choices=models_available, value=None)
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
submit_btn = gr.Button(value="Generate", variant="primary")
clear_btn = gr.Button(value="Clear", variant="secondary")
input_text = gr.Textbox(lines=1, label="", value="مرحبا", rtl=True, text_align="right", scale=3, show_copy_button=True)
with gr.Accordion(label="Generation Configurations", open=False):
max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=2048, label="Max New Tokens", step=128)
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
model_dropdown_a.change(load_model_a, inputs=[model_dropdown_a], outputs=[chatbot_a])
model_dropdown_b.change(load_model_b, inputs=[model_dropdown_b], outputs=[chatbot_b])
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
if __name__ == "__main__":
demo.queue().launch()